Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(14): 3975-3981, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38569133

RESUMEN

Vibrational fingerprints and combination bands are a direct measure of couplings that control molecular properties. However, most combination bands possess small transition dipoles. Here we use multiple, ultrafast coherent infrared pulses to resolve vibrational coupling between CH3CN fingerprint modes at 918 and 1039 cm-1 and combination bands in the 2750-6100 cm-1 region via doubly vibrationally enhanced (DOVE) coherent multidimensional spectroscopy (CMDS). This approach provides a direct probe of vibrational coupling between fingerprint modes and near-infrared combination bands of large and small transition dipoles in a molecular system over a large frequency range.

2.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38294314

RESUMEN

The utility of UiO-67 Metal-Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF-analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactions with simple polar and non-polar analytes. This problem is approached by investigating the interactions of polar (acetone and isopropanol) and non-polar (n-heptane) molecules with functionalized UiO-67 MOFs via temperature programmed desorption mass spectrometry and temperature programmed Fourier transform infrared spectroscopy. We find that isopropanol, acetone, and n-heptane bind reversibly and non-destructively to UiO-67 MOFs, where MOF and analyte functionality influence relative binding strengths (n-heptane ≈ isopropanol > acetone). During heating, all three analytes diffuse into the internal pore environment and directly interact with the µ3-OH groups located within the tetrahedral pores, evidenced by the IR response of ν(µ3-OH). We observe nonlinear changes in the infrared cross sections of the ν(CH) modes of acetone, isopropanol, and n-heptane following diffusion into UiO-67. Similarly, acetone's ν(C=O) infrared cross section increases dramatically when diffused into UiO-67. Ultimately, this in situ investigation provides insights into how individual molecular functional groups interact with UiO MOFs and enables a foundation where MOF interactions with complex molecular systems can be evaluated.

3.
ChemSusChem ; 15(1): e202102217, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34725931

RESUMEN

Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with µ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Amoníaco , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...