Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-24279621

RESUMEN

Quantification of naphthenic acids in water has been traditionally performed after extraction with organic solvents followed by analytic methods that are complex and costly for preliminary research or for continuous monitoring purposes. This study examines the application of fluorescence in organic solvents as an effective alternative, and the role of organic solvents on quantification results. Nine organic solvents were used: three polar protic alcohols (methanol, ethanol, and propanol), three polar aprotic (dichloromethane, acetone, and acetonitrile) and three non-polar (hexane, toluene, and diethyl ether). The calibration curves of the polar protic solvents performed the best; they had lower light scattering and higher method sensitivity than polar aprotic and non-polar. Methanol was selected for further experiments having a strong linearity for concentrations lower than 250 mg/L (R(2) > 0.99), and a low relative standard deviation (< 10%). The method sensitivity was improved by 70% using a methanol-deionized water mixture (50:50) as a solvent. The synchronous fluorescence mode with a reduced offset value of Δλ = 10 nm demonstrated potential for fingerprinting. The fluorescence technique for quantifying total naphthenic acids directly in organic solvents is a cost-effective analytical method compatible with the solid phase extraction of the sample.


Asunto(s)
Ácidos Carboxílicos/análisis , Solventes/química , Espectrometría de Fluorescencia/métodos , Calibración , Metanol/química
2.
J Chromatogr A ; 1293: 36-43, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23628174

RESUMEN

A method for quantitative characterization of naphthenic acid (NA) isomer groups by carbon number and extent of cyclization was developed and validated with water samples from northern Alberta. Following solid phase extraction, NAs undergo derivatization with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) allowing detection by positive electrospray ionization tandem mass spectrometry (+ESI)-MS/MS. NA-EDC derivatives produce a common product ion by MS/MS, regardless of structure of the starting NA. Thus, approximately constant relative response factors (RRFs) were assumed for the various isomer groups that elute at a given point in the elution gradient (supported by calculated RRFs for individual model NAs), facilitating quantification using a single standard (1-pyrenebutyric acid). To reduce the impact of major background fatty acids on NA data, the method employed an optimized liquid chromatography method that separated straight chain (Z=0) analytes from other NAs. Method validation was performed at two spiking levels (7.72µg and 38.6µg total refined Merichem per 500mL of reagent water) and good accuracy (mean recoveries of 82.4±2.5% and 93.0±2.6%, respectively; range ~50-130%) and precision (<17% RSD) were achieved at both spiking levels for all 60 NA isomer groups. The method also performed well in an independent method comparison study in which method accuracy values of 107%, 120%, and 121% were obtained for 2 spiked reagent waters (1mg/L and 50mg/L NAs) and spiked Athabasca River water (0.035mg/L NAs), respectively. Application of the method to samples from northern Alberta revealed that NA concentrations decreased in the order: process water (52.8mg/L)>tailings pond water (30.6mg/L)>well water (0.086mg/L)>surface water (0.007mg/L), and that samples were distinguishable by NA isomer profile using Principal components analysis.


Asunto(s)
Ácidos Carboxílicos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Ácidos Carboxílicos/química , Ácidos Carboxílicos/aislamiento & purificación , Isomerismo , Yacimiento de Petróleo y Gas/química , Estanques/química , Análisis de Componente Principal , Reproducibilidad de los Resultados , Ríos/química , Extracción en Fase Sólida , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Químicos del Agua/química
3.
Sci Total Environ ; 443: 403-12, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23202384

RESUMEN

Northern rivers exposed to high biochemical oxygen demand (BOD) loads are prone to dissolved oxygen (DO) sags in winter due to re-aeration occurring within limited open water leads. Additionally, photosynthesis is reduced by decreased daylight hours, inability of solar radiation to pass through ice, and slower algal growth in winter. The low volumetric flow decreases point-source dilution while their travel time increases. The Athabasca River in Alberta, Canada, has experienced these sags which may affect the aquatic ecosystem. A water quality model for an 800 km reach of this river was customized, calibrated, and validated specifically for DO and the factors that determine its concentration. After validation, the model was used to assess the assimilative capacity of the river and mitigation measures that could be deployed. The model reproduced the surface elevation and water temperature for the seven years simulated with mean absolute errors of <15 cm and <0.9 °C respectively. The ice cover was adequately predicted for all seven winters, and the simulation of nutrients and phytoplankton primary productivity were satisfactory. The DO concentration was very sensitive to the sediment oxygen demand (SOD), which represented about 50% of the DO sink in winter. The DO calibration was improved by implementing an annual SOD based on the BOD load. The model was used to estimate the capacity of the river to assimilate BOD loads in order to maintain a DO concentration of 7 mg/L, which represents the chronic provincial guideline plus a buffer of 0.5 mg/L. The results revealed the maximum assimilative BOD load of 8.9 ton/day at average flow conditions, which is lower than the maximum permitted load. In addition, the model predicted a minimum assimilative flow of about 52 m(3)/s at average BOD load. Climate change scenarios could increase the frequency of this low flow. A three-level warning-system is proposed to manage the BOD load proactively at different river discharges. Other mitigation options were explored such as upgrading the wastewater treatment of the major BOD point source and oxygen injection in the effluents. The model can be used as a management tool with updated SOD values to forecast the DO in low flow years and evaluate mitigation measures. As well, the methodology presented here can be applied to manage other ice-covered rivers.


Asunto(s)
Modelos Teóricos , Oxígeno/análisis , Alberta , Calibración , Cambio Climático , Monitoreo del Ambiente , Hidrodinámica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA