Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 109(10): 1721-1738.e4, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33823137

RESUMEN

Basal ganglia play a central role in regulating behavior, but the organization of their outputs to other brain areas is incompletely understood. We investigate the largest output nucleus, the substantia nigra pars reticulata (SNr), and delineate the organization and physiology of its projection populations in mice. Using genetically targeted viral tracing and whole-brain anatomical analysis, we identify over 40 SNr targets that encompass a roughly 50-fold range of axonal densities. Retrograde tracing from the volumetrically largest targets indicates that the SNr contains segregated subpopulations that differentially project to functionally distinct brain stem regions. These subpopulations are electrophysiologically specialized and topographically organized and collateralize to common diencephalon targets, including the motor and intralaminar thalamus as well as the pedunculopontine nucleus and the midbrain reticular formation. These findings establish that SNr signaling is organized as dense, parallel outputs to specific brain stem targets concurrent with extensive collateral branches that encompass the majority of SNr axonal boutons.


Asunto(s)
Ganglios Basales/citología , Tronco Encefálico/citología , Diencéfalo/citología , Neuronas/fisiología , Animales , Ganglios Basales/fisiología , Tronco Encefálico/fisiología , Diencéfalo/fisiología , Potenciales Evocados , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/fisiología
2.
Nat Methods ; 16(4): 341-350, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858600

RESUMEN

Brain atlases enable the mapping of labeled cells and projections from different brains onto a standard coordinate system. We address two issues in the construction and use of atlases. First, expert neuroanatomists ascertain the fine-scale pattern of brain tissue, the 'texture' formed by cellular organization, to define cytoarchitectural borders. We automate the processes of localizing landmark structures and alignment of brains to a reference atlas using machine learning and training data derived from expert annotations. Second, we construct an atlas that is active; that is, augmented with each use. We show that the alignment of new brains to a reference atlas can continuously refine the coordinate system and associated variance. We apply this approach to the adult murine brainstem and achieve a precise alignment of projections in cytoarchitecturally ill-defined regions across brains from different animals.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Animales , Encéfalo/anatomía & histología , Tronco Encefálico/diagnóstico por imagen , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras , Neuroanatomía , Neuronas , Probabilidad , Médula Espinal/diagnóstico por imagen
3.
Neuroscience ; 368: 152-170, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28843993

RESUMEN

The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas.


Asunto(s)
Conducta Animal/fisiología , Tronco Encefálico/fisiología , Núcleo Motor del Nervio Facial/fisiología , Actividad Motora/fisiología , Boca/fisiología , Vías Nerviosas/fisiología , Roedores/fisiología , Sensación/fisiología , Percepción del Tacto/fisiología , Vibrisas/fisiología , Animales , Boca/inervación
4.
Neuron ; 85(5): 1132-44, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25704949

RESUMEN

Signal transfer in neural circuits is dynamically modified by the recent history of neuronal activity. Short-term plasticity endows synapses with nonlinear transmission properties, yet synapses in sensory and motor circuits are capable of signaling linearly over a wide range of presynaptic firing rates. How do such synapses achieve rate-invariant transmission despite history-dependent nonlinearities? Here, ultrastructural, biophysical, and computational analyses demonstrate that concerted molecular, anatomical, and physiological refinements are required for central vestibular nerve synapses to linearly transmit rate-coded sensory signals. Vestibular synapses operate in a physiological regime of steady-state depression imposed by tonic firing. Rate-invariant transmission relies on brief presynaptic action potentials that delimit calcium influx, large pools of rapidly mobilized vesicles, multiple low-probability release sites, robust postsynaptic receptor sensitivity, and efficient transmitter clearance. Broadband linear synaptic filtering of head motion signals is thus achieved by coordinately tuned synaptic machinery that maintains physiological operation within inherent cell biological limitations.


Asunto(s)
Sinapsis/fisiología , Transmisión Sináptica/fisiología , Nervio Vestibular/fisiología , Animales , Animales Recién Nacidos , Calcio/fisiología , Estimulación Eléctrica , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Sinapsis/ultraestructura , Nervio Vestibular/ultraestructura
5.
J Neurosci ; 31(46): 16665-74, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22090493

RESUMEN

The cerebellum dedicates a majority of the brain's neurons to processing a wide range of sensory, motor, and cognitive signals. Stereotyped circuitry within the cerebellar cortex suggests that similar computations are performed throughout the cerebellum, but little is known about whether diverse precerebellar neurons are specialized for the nature of the information they convey. In vivo recordings indicate that firing responses to sensory or motor stimuli vary dramatically across different precerebellar nuclei, but whether this reflects diverse synaptic inputs or differentially tuned intrinsic excitability has not been determined. We targeted whole-cell patch-clamp recordings to neurons in eight precerebellar nuclei which were retrogradely labeled from different regions of the cerebellum in mice. Intrinsic physiology was compared across neurons in the medial vestibular, external cuneate, lateral reticular, prepositus hypoglossi, supragenual, Roller/intercalatus, reticularis tegmenti pontis, and pontine nuclei. Within the firing domain, precerebellar neurons were remarkably similar. Firing faithfully followed temporally modulated inputs, could be sustained at high rates, and was a linear function of input current over a wide range of inputs and firing rates. Pharmacological analyses revealed common expression of Kv3 currents, which were essential for a wide linear firing range, and of SK (small-conductance calcium-activated potassium) currents, which were essential for a wide linear input range. In contrast, membrane properties below spike threshold varied considerably within and across precerebellar nuclei, as evidenced by variability in postinhibitory rebound firing. Our findings indicate that diverse precerebellar neurons perform similar scaling computations on their inputs but may be differentially tuned to synaptic inhibition.


Asunto(s)
Potenciales de Acción/fisiología , Fenómenos Biofísicos/fisiología , Cerebelo/citología , Neuronas/clasificación , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Apamina/farmacología , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Mapeo Encefálico , Dextranos/metabolismo , Estimulación Eléctrica , Femenino , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Técnicas In Vitro , Proteínas Luminiscentes/genética , Masculino , Bulbo Raquídeo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Puente/citología , Bloqueadores de los Canales de Potasio/farmacología , Pirimidinas/farmacología
6.
Neuron ; 68(4): 763-75, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21092864

RESUMEN

Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Plasticidad Neuronal/fisiología , Filtrado Sensorial/fisiología , Sinapsis/fisiología , Nervio Vestibular/fisiología , Animales , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL
7.
Neuron ; 60(2): 343-52, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18957225

RESUMEN

The vestibular system is responsible for transforming head motion into precise eye, head, and body movements that rapidly stabilize gaze and posture. How do central excitatory synapses mediate behavioral outputs accurately matched to sensory inputs over a wide dynamic range? Here we demonstrate that vestibular afferent synapses in vitro express frequency-independent transmission that spans their in vivo dynamic range (5-150 spikes/s). As a result, the synaptic charge transfer per unit time is linearly related to vestibular afferent activity in both projection and intrinsic neurons of the vestibular nuclei. Neither postsynaptic glutamate receptor desensitization nor saturation affect the relative amplitude or frequency-independence of steady-state transmission. Finally, we show that vestibular nucleus neurons can transduce synaptic inputs into linear changes in firing rate output without relying on one-to-one calyceal transmission. These data provide a physiological basis for the remarkable linearity of vestibular reflexes.


Asunto(s)
Equilibrio Postural/fisiología , Reflejo Vestibuloocular/fisiología , Células Receptoras Sensoriales/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Núcleos Vestibulares/fisiología , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/citología , Interneuronas/fisiología , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Receptores de Glutamato/fisiología , Células Receptoras Sensoriales/citología , Sinapsis/ultraestructura , Nervio Vestibular/fisiología , Núcleos Vestibulares/citología , Vestíbulo del Laberinto/fisiología
8.
J Virol ; 81(20): 11499-506, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17686869

RESUMEN

Many viruses of eukaryotes that use mRNA cap-dependent translation strategies have evolved alternate mechanisms to generate the mRNA cap compared to their hosts. The most divergent of these mechanisms are those used by nonsegmented negative-sense (NNS) RNA viruses, which evolved a capping enzyme that transfers RNA onto GDP, rather than GMP onto the 5' end of the RNA. Working with vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, we show that mRNA cap formation is further distinct, requiring a specific cis-acting signal in the RNA. Using recombinant VSV, we determined the function of the eight conserved positions of the gene-start sequence in mRNA initiation and cap formation. Alterations to this sequence compromised mRNA initiation and separately formation of the GpppA cap structure. These studies provide genetic and biochemical evidence that the mRNA capping apparatus of VSV evolved an RNA capping machinery that functions in a sequence-specific manner.


Asunto(s)
Caperuzas de ARN , ARN Viral , Vesiculovirus/genética , Secuencia de Bases , Codón Iniciador , Guanosina Difosfato , Transcripción Genética , Estomatitis Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...