Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
2.
Open Biol ; 9(9): 190156, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31506018

RESUMEN

The response to DNA replication stress in eukaryotes is under the control of the ataxia-telangiectasia and Rad3-related (ATR) kinase. ATR responds to single-stranded (ss) DNA to stabilize distressed DNA replication forks, modulate DNA replication firing and prevent cells with damaged DNA or incomplete DNA replication from entering into mitosis. Furthermore, inhibitors of ATR are currently in clinical development either as monotherapies or in combination with agents that perturb DNA replication. To gain a genetic view of the cellular pathways requiring ATR kinase function, we mapped genes whose mutation causes hypersensitivity to ATR inhibitors with genome-scale CRISPR/Cas9 screens. We delineate a consensus set of 117 genes enriched in DNA replication, DNA repair and cell cycle regulators that promote survival when ATR kinase activity is suppressed. We validate 14 genes from this set and report genes not previously described to modulate response to ATR inhibitors. In particular we found that the loss of the POLE3/POLE4 proteins, which are DNA polymerase ε accessory subunits, results in marked hypersensitivity to ATR inhibition. We anticipate that this 117-gene set will be useful for the identification of genes involved in the regulation of genome integrity and the characterization of new biological processes involving ATR, and may reveal biomarkers of ATR inhibitor response in the clinic.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Variación Genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Sistemas CRISPR-Cas , Línea Celular , Edición Génica , Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Marcación de Gen , Genes Reporteros , Estudios de Asociación Genética , Humanos , Interferencia de ARN , ARN Guía de Kinetoplastida
3.
Genes Dev ; 33(19-20): 1397-1415, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31467087

RESUMEN

DNA repair by homologous recombination (HR) is essential for genomic integrity, tumor suppression, and the formation of gametes. HR uses DNA synthesis to repair lesions such as DNA double-strand breaks and stalled DNA replication forks, but despite having a good understanding of the steps leading to homology search and strand invasion, we know much less of the mechanisms that establish recombination-associated DNA polymerization. Here, we report that C17orf53/HROB is an OB-fold-containing factor involved in HR that acts by recruiting the MCM8-MCM9 helicase to sites of DNA damage to promote DNA synthesis. Mice with targeted mutations in Hrob are infertile due to depletion of germ cells and display phenotypes consistent with a prophase I meiotic arrest. The HROB-MCM8-MCM9 pathway acts redundantly with the HELQ helicase, and cells lacking both HROB and HELQ have severely impaired HR, suggesting that they underpin two major routes for the completion of HR downstream from RAD51. The function of HROB in HR is reminiscent of that of gp59, which acts as the replicative helicase loader during bacteriophage T4 recombination-dependent DNA replication. We therefore propose that the loading of MCM8-MCM9 by HROB may similarly be a key step in the establishment of mammalian recombination-associated DNA synthesis.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Animales , Línea Celular , ADN Helicasas/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Infertilidad/genética , Masculino , Ratones Endogámicos C57BL , Eliminación de Secuencia , Células Sf9
4.
Elife ; 82019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30810526

RESUMEN

Neurons throughout the mammalian brain possess non-motile cilia, organelles with varied functions in sensory physiology and cellular signaling. Yet, the roles of cilia in these neurons are poorly understood. To shed light into their functions, we studied EFHC1, an evolutionarily conserved protein required for motile cilia function and linked to a common form of inherited epilepsy in humans, juvenile myoclonic epilepsy (JME). We demonstrate that C. elegans EFHC-1 functions within specialized non-motile mechanosensory cilia, where it regulates neuronal activation and dopamine signaling. EFHC-1 also localizes at the synapse, where it further modulates dopamine signaling in cooperation with the orthologue of an R-type voltage-gated calcium channel. Our findings unveil a previously undescribed dual-regulation of neuronal excitability at sites of neuronal sensory input (cilium) and neuronal output (synapse). Such a distributed regulatory mechanism may be essential for establishing neuronal activation thresholds under physiological conditions, and when impaired, may represent a novel pathomechanism for epilepsy.


Asunto(s)
Caenorhabditis elegans/fisiología , Cilios/metabolismo , Neuronas Dopaminérgicas/fisiología , Sinapsis/metabolismo , Transmisión Sináptica , Animales
5.
Nature ; 559(7713): 285-289, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973717

RESUMEN

The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Edición Génica , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ribonucleótidos/genética , Animales , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Línea Celular , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Femenino , Genes BRCA1 , Genoma/genética , Células HeLa , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nature ; 560(7716): 117-121, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022168

RESUMEN

53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.


Asunto(s)
Reparación del ADN , Complejos Multiproteicos/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/genética , Femenino , Genes BRCA1 , Humanos , Cambio de Clase de Inmunoglobulina/genética , Ratones , Modelos Biológicos , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Telómeros/metabolismo , Proteína p53 Supresora de Tumor/deficiencia
7.
Nature ; 536(7614): 100-3, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27462807

RESUMEN

DNA double-strand breaks (DSBs) elicit a histone modification cascade that controls DNA repair. This pathway involves the sequential ubiquitination of histones H1 and H2A by the E3 ubiquitin ligases RNF8 and RNF168, respectively. RNF168 ubiquitinates H2A on lysine 13 and lysine 15 (refs 7, 8) (yielding H2AK13ub and H2AK15ub, respectively), an event that triggers the recruitment of 53BP1 (also known as TP53BP1) to chromatin flanking DSBs. 53BP1 binds specifically to H2AK15ub-containing nucleosomes through a peptide segment termed the ubiquitination-dependent recruitment motif (UDR), which requires the simultaneous engagement of histone H4 lysine 20 dimethylation (H4K20me2) by its tandem Tudor domain. How 53BP1 interacts with these two histone marks in the nucleosomal context, how it recognizes ubiquitin, and how it discriminates between H2AK13ub and H2AK15ub is unknown. Here we present the electron cryomicroscopy (cryo-EM) structure of a dimerized human 53BP1 fragment bound to a H4K20me2-containing and H2AK15ub-containing nucleosome core particle (NCP-ubme) at 4.5 Å resolution. The structure reveals that H4K20me2 and H2AK15ub recognition involves intimate contacts with multiple nucleosomal elements including the acidic patch. Ubiquitin recognition by 53BP1 is unusual and involves the sandwiching of the UDR segment between ubiquitin and the NCP surface. The selectivity for H2AK15ub is imparted by two arginine fingers in the H2A amino-terminal tail, which straddle the nucleosomal DNA and serve to position ubiquitin over the NCP-bound UDR segment. The structure of the complex between NCP-ubme and 53BP1 reveals the basis of 53BP1 recruitment to DSB sites and illuminates how combinations of histone marks and nucleosomal elements cooperate to produce highly specific chromatin responses, such as those elicited following chromosome breaks.


Asunto(s)
Microscopía por Crioelectrón , Histonas/química , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Metilación , Modelos Moleculares , Nucleosomas/química , Nucleosomas/genética , Docilidad , Multimerización de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina/metabolismo , Ubiquitinación
8.
Front Physiol ; 4: 88, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23986713

RESUMEN

Despite having a small nervous system (302 neurons) and relatively short lifespan (14-21 days), the nematode Caenorhabditis elegans has a substantial ability to change its behavior in response to experience. The behavior discussed here is the tap withdrawal response, whereby the worm crawls backwards a brief distance in response to a non-localized mechanosensory stimulus from a tap to the side of the Petri plate within which it lives. The neural circuit that underlies this behavior is primarily made up of five sensory neurons and four pairs of interneurons. In this review we describe two classes of mechanosensory plasticity: adult learning and memory and experience dependent changes during development. As worms develop through young adult and adult stages there is a shift toward deeper habituation of response probability that is likely the result of changes in sensitivity to stimulus intensity. Adult worms show short- intermediate- and long-term habituation as well as context dependent habituation. Short-term habituation requires glutamate signaling and auto-phosphorylation of voltage-dependent potassium channels and is modulated by dopamine signaling in the mechanosensory neurons. Long-term memory (LTM) for habituation is mediated by down-regulation of expression of an AMPA-type glutamate receptor subunit. Intermediate memory involves an increase in release of an inhibitory neuropeptide. Depriving larval worms of mechanosensory stimulation early in development leads to fewer synaptic vesicles in the mechanosensory neurons and lower levels of an AMPA-type glutamate receptor subunit in the interneurons. Overall, the mechanosensory system of C. elegans shows a great deal of experience dependent plasticity both during development and as an adult. The simplest form of learning, habituation, is not so simple and is mediated and/or modulated by a number of different processes, some of which we are beginning to understand.

9.
Learn Mem ; 20(2): 103-8, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325727

RESUMEN

Lasting memories are likely to result from a lasting change in neurotransmission. In the nematode Caenorhabditis elegans, spaced training with a tap stimulus induces habituation to the tap that lasts for >24 h and is dependent on glutamate transmission, postsynaptic AMPA receptors, and CREB. Here we describe a distinct, presynaptic mechanism for a shorter lasting memory for tap habituation induced by massed training. We report that a FMRFamide-related peptide (FMRF = Phe-Met-Arg-Phe-NH(2)), FLP-20, is critical for memory lasting 12 h following massed training, but is not required for other forms of memory. Massed training correlated with a flp-20-dependent increase in synaptobrevin tagged with green fluorescent protein in the presynaptic terminals of the PLM mechanosensory neurons that followed the timeline of the memory trace. We also demonstrated that flp-20 is required specifically in the mechanosensory neurons for memory 12 h after massed training. These findings show that within the same species and form of learning, memory is induced by distinct mechanisms to create a lasting alteration in neurotransmission that is dependent upon the temporal pattern of training: memory of spaced training results from postsynaptic changes in the interneurons of the neural circuit, whereas memory of massed training results from presynaptic changes in the mechanosensory neurons of the neural circuit.


Asunto(s)
Caenorhabditis elegans/fisiología , FMRFamida/metabolismo , FMRFamida/farmacología , Habituación Psicofisiológica/efectos de los fármacos , Mecanorreceptores/efectos de los fármacos , Memoria/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , FMRFamida/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Aprendizaje/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/genética , Mutación/genética , Neuropéptidos/genética , Percepción Espacial/fisiología , Factores de Tiempo
10.
PLoS Genet ; 7(9): e1002257, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21912529

RESUMEN

Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1- and dsh-1-dependent manner. Our findings suggest a novel role for a PCP-like pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Polaridad Celular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuritas/fisiología , Fosfoproteínas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Dishevelled , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Fosfoproteínas/genética , Interferencia de ARN , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...