Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Hum Mol Genet ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832639

RESUMEN

Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant ataxia caused by a large expansion of the (ATTCT)n repeat in ATXN10. SCA10 was described in Native American and Asian individuals which prompted a search for an expanded haplotype to confirm a common ancestral origin for the expansion event. All patients with SCA10 expansions in our cohort share a single haplotype defined at the 5'-end by the minor allele of rs41524547, located ~35 kb upstream of the SCA10 expansion. Intriguingly, rs41524547 is located within the miRNA gene, MIR4762, within its DROSHA cleavage site and just outside the seed sequence for mir4792-5p. The world-wide frequency of rs41524547-G is less than 5% and found almost exclusively in the Americas and East Asia-a geographic distribution that mirrors reported SCA10 cases. We identified rs41524547-G(+) DNA from the 1000 Genomes/International Genome Sample Resource and our own general population samples and identified SCA10 repeat expansions in up to 25% of these samples. The reduced penetrance of these SCA10 expansions may be explained by a young (pre-onset) age at sample collection, a small repeat size, purity of repeat units, or the disruption of miR4762-5p function. We conclude that rs41524547-G is the most robust at-risk SNP allele for SCA10, is useful for screening of SCA10 expansions in population genetics studies and provides the most compelling evidence to date for a single, prehistoric origin of SCA10 expansions sometime prior to or during the migration of individuals across the Bering Land Bridge into the Americas.

2.
Front Neurol ; 15: 1364658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595851

RESUMEN

Introduction: Plasma Aß42/40 ratio can help predict amyloid PET status, but its clinical utility in Alzheimer's disease (AD) assessment is unclear. Methods: Aß42/40 ratio was measured by LC-MS/MS for 250 specimens with associated amyloid PET imaging, diagnosis, and demographic data, and for 6,192 consecutive clinical specimens submitted for Aß42/40 testing. Results: High diagnostic sensitivity and negative predictive value (NPV) for Aß-PET positivity were observed, consistent with the clinical performance of other plasma LC-MS/MS assays, but with greater separation between Aß42/40 values for individuals with positive vs. negative Aß-PET results. Assuming a moderate prevalence of Aß-PET positivity, a cutpoint was identified with 99% NPV, which could help predict that AD is likely not the cause of patients' cognitive impairment and help reduce PET evaluation by about 40%. Conclusion: High-throughput plasma Aß42/40 LC-MS/MS assays can help identify patients with low likelihood of AD pathology, which can reduce PET evaluations, allowing for cost savings.

3.
Alzheimers Dement ; 20(4): 2830-2842, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441274

RESUMEN

INTRODUCTION: Magnetic resonance imaging (MRI) biomarkers are needed for indexing early biological stages of Alzheimer's disease (AD), such as plasma amyloid-ß (Aß42/40) positivity in Aß positron emission tomography (PET) negative individuals. METHODS: Diffusion free-water (FW) MRI was acquired in individuals with normal cognition (NC) and mild cognitive impairment (MCI) with Aß plasma-/PET- (NC = 22, MCI = 60), plasma+/PET- (NC = 5, MCI = 20), and plasma+/PET+ (AD dementia = 21) biomarker status. Gray and white matter FW and fractional anisotropy (FAt) were compared cross-sectionally and the relationships between imaging, plasma and PET biomarkers were assessed. RESULTS: Plasma+/PET- demonstrated increased FW (24 regions) and decreased FAt (66 regions) compared to plasma-/PET-. FW (16 regions) and FAt (51 regions) were increased in plasma+/PET+ compared to plasma+/PET-. Composite brain FW correlated with plasma Aß42/40 and p-tau181. DISCUSSION: FW imaging changes distinguish plasma Aß42/40 positive and negative groups, independent of group differences in cognitive status, Aß PET status, and other plasma biomarkers (i.e., t-tau, p-tau181, glial fibrillary acidic protein, neurofilament light). HIGHLIGHTS: Plasma Aß42/40 positivity is associated with brain microstructure decline. Plasma+/PET- demonstrated increased FW in 24 total GM and WM regions. Plasma+/PET- demonstrated decreased FAt in 66 total GM and WM regions. Whole-brain FW correlated with plasma Aß42/40 and p-tau181 measures. Plasma+/PET- demonstrated decreased cortical volume and thickness.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/metabolismo , Imagen de Difusión por Resonancia Magnética , Biomarcadores , Proteínas tau
4.
Alzheimers Dement ; 20(1): 437-446, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37671801

RESUMEN

INTRODUCTION: Alzheimer's disease studies often lack ethnic diversity. METHODS: We evaluated associations between plasma biomarkers commonly studied in Alzheimer's (p-tau181, GFAP, and NfL), clinical diagnosis (clinically normal, amnestic MCI, amnestic dementia, or non-amnestic MCI/dementia), and Aß-PET in Hispanic and non-Hispanic older adults. Hispanics were predominantly of Cuban or South American ancestry. RESULTS: Three-hundred seventy nine participants underwent blood draw (71.9 ± 7.8 years old, 60.2% female, 57% Hispanic of which 88% were Cuban or South American) and 240 completed Aß-PET. P-tau181 was higher in amnestic MCI (p = 0.004, d = 0.53) and dementia (p < 0.001, d = 0.97) than in clinically normal participants and discriminated Aß-PET[+] and Aß-PET[-] (AUC = 0.86). P-tau181 outperformed GFAP and NfL. There were no significant interactions with ethnicity. Among amnestic MCI, Hispanics had lower odds of elevated p-tau181 than non-Hispanic (OR = 0.41, p = 0.006). DISCUSSION: Plasma p-tau181 informs etiological diagnosis of cognitively impaired Hispanic and non-Hispanic older adults. Hispanic ethnicity may relate to greater likelihood of non-Alzheimer's contributions to memory loss. HIGHLIGHTS: Alzheimer's biomarkers were measured in Hispanic and non-Hispanic older adults. Plasma p-tau181 related to amnestic cognitive decline and brain amyloid burden. AD biomarker associations did not differ between Hispanic and non-Hispanic ethnicity. Hispanic individuals may be more likely to have non-Alzheimer causes of memory loss.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Femenino , Humanos , Anciano , Persona de Mediana Edad , Masculino , Proteínas Amiloidogénicas , Encéfalo/diagnóstico por imagen , Amnesia , Biomarcadores , Péptidos beta-Amiloides , Proteínas tau
5.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38076912

RESUMEN

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A ß ; in plaques and in CAA; further, recombinant MDK and PTN enhance A ß ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A ß 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A ß ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

6.
Mol Ther Methods Clin Dev ; 31: 101146, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027063

RESUMEN

Enhancing production of protein cargoes delivered by gene therapies can improve efficacy by reducing the amount of vector or simply increasing transgene expression levels. We explored the utility of a 126-amino acid collagen domain (CD) derived from the C1qTNF3 protein as a fusion partner to chaperone secreted proteins, extracellular "decoy receptor" domains, and single-chain variable fragments (scFvs). Fusions to the CD domain result in multimerization and enhanced levels of secretion of numerous fusion proteins while maintaining functionality. Efficient creation of bifunctional proteins using the CD domain is also demonstrated. Recombinant adeno-associated viral vector delivery of the CD with a signal peptide resulted in high-level expression with minimal biological impact as assessed by whole-brain transcriptomics. As a proof-of-concept in vivo study, we evaluated three different anti-amyloid Aß scFvs (anti-Aß scFvs), alone or expressed as CD fusions, following viral delivery to neonatal CRND8 mice. The CD fusion increased half-life, expression levels, and improved efficacy for amyloid lowering of a weaker binding anti-Aß scFv. These studies validate the potential utility of this small CD as a fusion partner for secretory cargoes delivered by gene therapy and demonstrate that it is feasible to use this CD fusion to create biotherapeutic molecules with enhanced avidity or bifunctionality.

7.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37905053

RESUMEN

Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.

8.
Front Neurol ; 14: 1179205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602238

RESUMEN

Introduction: Semantic intrusion errors (SI) have distinguished between those with amnestic Mild Cognitive Impairment (aMCI) who are amyloid positive (A+) versus negative (A-) on positron emission tomography (PET). Method: This study examines the association between SI and plasma - based biomarkers. One hundred and twenty-eight participants received SiMoA derived measures of plasma pTau-181, ratio of two amyloid-ß peptide fragments (Aß42/Aß40), Neurofilament Light protein (NfL), Glial Fibrillary Acidic Protein (GFAP), ApoE genotyping, and amyloid PET imaging. Results: The aMCI A+ (n = 42) group had a higher percentage of ApoE ɛ4 carriers, and greater levels of pTau-181 and SI, than Cognitively Unimpaired (CU) A- participants (n = 25). CU controls did not differ from aMCI A- (n = 61) on plasma biomarkers or ApoE genotype. Logistic regression indicated that ApoE ɛ4 positivity, pTau-181, and SI were independent differentiating predictors (Correct classification = 82.0%; Sensitivity = 71.4%; Specificity = 90.2%) in identifying A+ from A- aMCI cases. Discussion: A combination of plasma biomarkers, ApoE positivity and SI had high specificity in identifying A+ from A- aMCI cases.

9.
Acta Neuropathol Commun ; 11(1): 99, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337279

RESUMEN

Apolipoprotein (APOE) E4 isoform is a major risk factor of Alzheimer's disease and contributes to metabolic and neuropathological abnormalities during brain aging. To provide insights into whether APOE4 genotype is related to tau-associated neurodegeneration, we have generated human P301S mutant tau transgenic mice (PS19) that carry humanized APOE alleles (APOE2, APOE3 or APOE4). In aging mice that succumbed to paralysis, PS19 mice homozygous for APOE3 had the longest lifespan when compared to APOE4 and APOE2 homozygous mice (APOE3 > APOE4 ~ APOE2). Heterozygous mice with one human APOE and one mouse Apoe allele did not show any variations in lifespan. At end-stage, PS19 mice homozygous for APOE3 and APOE4 showed equivalent levels of phosphorylated tau burden, inflammation levels and ventricular volumes. Compared to these cohorts, PS19 mice homozygous for APOE2 showed lower induction of phosphorylation on selective epitopes, though the effect sizes were small and variable. In spite of this, the APOE2 cohort showed shorter lifespan relative to APOE3 homozygous mice. None of the cohorts accumulated appreciable levels of phosphorylated tau compartmentalized in the insoluble cell fraction. RNAseq analysis showed that the induction of immune gene expression was comparable across all the APOE genotypes in PS19 mice. Notably, the APOE4 homozygous mice showed additional induction of transcripts corresponding to the Alzheimer's disease-related plaque-induced gene signature. In human Alzheimer's disease brain tissues, we found no direct correlation between higher burden of phosphorylated tau and APOE4 genotype. As expected, there was a strong correlation between phosphorylated tau burden with amyloid deposition in APOE4-positive Alzheimer's disease cases. Overall, our results indicate that APOE3 genotype may confer some resilience to tauopathy, while APOE4 and APOE2 may act through multiple pathways to increase the pathogenicity in the context of tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Longevidad/genética , Apolipoproteínas E/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Ratones Transgénicos , Genotipo
10.
medRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168329

RESUMEN

INTRODUCTION: Plasma Aß42/40 ratio can be used to help predict amyloid PET status, but its clinical utility in Alzheimer's disease (AD) assessment is unclear. METHODS: Aß42/40 ratio was measured by LC-MS/MS in 250 specimens with associated amyloid PET imaging, diagnosis, and demographic data, and 6,192 consecutive clinical specimens submitted for Aß42/40 testing. RESULTS: High diagnostic sensitivity and negative predictive value (NPV) for Aß-PET positivity were observed, consistent with the clinical performance of other plasma LC-MS/MS assays, but with greater separation between Aß42/40 values for individuals with positive vs negative Aß-PET results. Assuming a moderate prevalence of Aß-PET positivity, a cutpoint was identified with 99% NPV, which could help predict that AD is likely not the cause of patients' cognitive impairment and help reduce PET evaluation by about 40%. DISCUSSION: Using high-throughput plasma Aß42/40 LC-MS/MS assays can help reduce PET evaluations in patients with low likelihood of AD pathology, allowing for cost savings.

11.
Alzheimers Res Ther ; 14(1): 104, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897046

RESUMEN

BACKGROUND: The S209F variant of Abelson Interactor Protein 3 (ABI3) increases risk for Alzheimer's disease (AD), but little is known about its function in relation to AD pathogenesis. METHODS: Here, we use a mouse model that is deficient in Abi3 locus to study how the loss of function of Abi3 impacts two cardinal neuropathological hallmarks of AD-amyloid ß plaques and tau pathology. Our study employs extensive neuropathological and transcriptomic characterization using transgenic mouse models and adeno-associated virus-mediated gene targeting strategies. RESULTS: Analysis of bulk RNAseq data confirmed age-progressive increase in Abi3 levels in rodent models of AD-type amyloidosis and upregulation in AD patients relative to healthy controls. Using RNAscope in situ hybridization, we localized the cellular distribution of Abi3 in mouse and human brains, finding that Abi3 is expressed in both microglial and non-microglial cells. Next, we evaluated Abi3-/- mice and document that both Abi3 and its overlapping gene, Gngt2, are disrupted in these mice. Using multiple transcriptomic datasets, we show that expression of Abi3 and Gngt2 are tightly correlated in rodent models of AD and human brains, suggesting a tight co-expression relationship. RNAseq of the Abi3-Gngt2-/- mice revealed upregulation of Trem2, Plcg2, and Tyrobp, concomitant with induction of an AD-associated neurodegenerative signature, even in the absence of AD-typical neuropathology. In APP mice, loss of Abi3-Gngt2 resulted in a gene dose- and age-dependent reduction in Aß deposition. Additionally, in Abi3-Gngt2-/- mice, expression of a pro-aggregant form of human tau exacerbated tauopathy and astrocytosis. Further, using in vitro culture assays, we show that the AD-associated S209F mutation alters the extent of ABI3 phosphorylation. CONCLUSIONS: These data provide an important experimental framework for understanding the role of Abi3-Gngt2 function and early inflammatory gliosis in AD. Our studies also demonstrate that inflammatory gliosis could have opposing effects on amyloid and tau pathology, highlighting the unpredictability of targeting immune pathways in AD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enfermedad de Alzheimer , Amiloidosis , Subunidades gamma de la Proteína de Unión al GTP , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/genética , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Gliosis/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Glicoproteínas de Membrana/metabolismo , Ratones Transgénicos , Placa Amiloide/patología , Receptores Inmunológicos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
12.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897751

RESUMEN

MHCII molecules, expressed by professional antigen-presenting cells (APCs) such as T cells and B cells, are hypothesized to play a key role in the response of cellular immunity to α-synuclein (α-syn). However, the role of cellular immunity in the neuroanatomic transmission of α-syn pre-formed fibrillar (PFF) seeds is undetermined. To illuminate whether cellular immunity influences the transmission of α-syn seeds from the periphery into the CNS, we injected preformed α-syn PFFs in the hindlimb of the Line M83 transgenic mouse model of synucleinopathy lacking MhcII. We showed that a complete deficiency in MhcII accelerated the appearance of seeded α-syn pathology and shortened the lifespan of the PFF-seeded M83 mice. To characterize whether B-cell and T-cell inherent MhcII function underlies this accelerated response to PFF seeding, we next injected α-syn PFFs in Rag1-/- mice which completely lacked these mature lymphocytes. There was no alteration in the lifespan or burden of endstage α-syn pathology in the PFF-seeded, Rag1-deficient M83+/- mice. Together, these results suggested that MhcII function on immune cells other than these classical APCs is potentially involved in the propagation of α-syn in this model of experimental synucleinopathy. We focused on microglia next, finding that while microglial burden was significantly upregulated in PFF-seeded, MhcII-deficient mice relative to controls, the microglial activation marker Cd68 was reduced in these mice, suggesting that these microglia were not responsive. Additional analysis of the CNS showed the early appearance of the neurotoxic astrocyte A1 signature and the induction of the Ifnγ-inducible anti-viral response mediated by MhcI in the MhcII-deficient, PFF-seeded mice. Overall, our data suggest that the loss of MhcII function leads to a dysfunctional response in non-classical APCs and that this response could potentially play a role in determining PFF-induced pathology. Collectively, our results identify the critical role of MhcII function in synucleinopathies induced by α-syn prion seeds.


Asunto(s)
Sinucleinopatías , Animales , Proteínas de Homeodominio , Ratones , Ratones Transgénicos , Microglía , alfa-Sinucleína/genética
13.
Acta Neuropathol Commun ; 10(1): 57, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440098

RESUMEN

Apolipoprotein (APOE) is a major risk factor of Alzheimer's disease (AD), with the E2, E3 and E4 isoforms differentially regulating the burden of AD-associated neuropathologies, such as amyloid ß and tau. In AD, pathological tau is thought to spread along neuroanatomic connections following a prion-like mechanism. To provide insights into whether APOE isoforms differentially regulate the prion properties of tau and determine trans-synaptic transmission of tauopathy, we have generated human P301S mutant tau transgenic mice (PS19) that carry human APOE (APOE2, APOE3 or APOE4) or mouse Apoe allele. Mice received intrahippocamal injections of preformed aggregates of K18-tau at young ages, which were analyzed 5 months post-inoculation. Compared to the parental PS19 mice with mouse Apoe alleles, PS19 mice expressing human APOE alleles generally responded to K18-tau seeding with more intense AT8 immunoreactive phosphorylated tau athology. APOE3 homozygous mice accumulated higher levels of AT8-reactive ptau and microgliosis relative to APOE2 or APOE4 homozygotes (E3 > E4~2). PS19 mice that were heterozygous for APOE3 showed similar results, albeit to a lesser degree. In the timeframe of our investigation, we did not observe significant induction of argentophilic or MC1-reactive neurofibrillary tau tangle in PS19 mice homozygous for human APOE. To our knowledge, this is the first comprehensive study in rodent models that provides neuropathological insights into the dose-dependent effect of APOE isoforms on phosphorylated tau pathology induced by recombinant tau prions.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E/metabolismo , Priones , Tauopatías , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Humanos , Ratones , Ratones Transgénicos , Priones/genética , Isoformas de Proteínas/genética , Tauopatías/complicaciones , Tauopatías/genética
14.
Neurotherapeutics ; 19(1): 186-208, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35286658

RESUMEN

Immune activation accompanies the development of proteinopathy in the brains of Alzheimer's dementia patients. Evolving from the long-held viewpoint that immune activation triggers the pathological trajectory in Alzheimer's disease, there is accumulating evidence now that microglial activation is neither pro-amyloidogenic nor just a simple reactive process to the proteinopathy. Preclinical studies highlight an interesting aspect of immunity, i.e., spurring immune system activity may be beneficial under certain circumstances. Indeed, a dynamic evolving relationship between different activation states of the immune system and its neuronal neighbors is thought to regulate overall brain organ health in both healthy aging and progression of Alzheimer's dementia. A new premise evolving from genome, transcriptome, and proteome data is that there might be at least two major phases of immune activation that accompany the pathological trajectory in Alzheimer's disease. Though activation on a chronic scale will certainly lead to neurodegeneration, this emerging knowledge of a potential beneficial aspect of immune activation allows us to form holistic insights into when, where, and how much immune system activity would need to be tuned to impact the Alzheimer's neurodegenerative cascade. Even with the trove of recently emerging -omics data from patients and preclinical models, how microglial phenotypes are functionally related to the transition of a healthy aging brain towards progressive degenerative state remains unknown. A deeper understanding of the synergism between microglial functional states and brain organ health could help us discover newer interventions and therapies that enable us to address the current paucity of disease-modifying therapies in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Encéfalo/patología , Homeostasis , Humanos , Microglía/patología , Neuronas/patología
15.
Neuropathol Appl Neurobiol ; 48(2): e12779, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34825397

RESUMEN

AIMS: To illuminate the pathological synergy between Aß and tau leading to emergence of neurofibrillary tangles (NFT) in Alzheimer's disease (AD), here, we have performed a comparative neuropathological study utilising three distinctive variants of human tau (WT tau, P301L mutant tau and S320F mutant tau). Previously, in non-transgenic mice, we showed that WT tau or P301L tau does not form NFT while S320F tau can spontaneously aggregate into NFT, allowing us to test the selective vulnerability of these different tau conformations to the presence of Aß plaques. METHODS: We injected recombinant AAV-tau constructs into neonatal APP transgenic TgCRND8 mice or into 3-month-old TgCRND8 mice; both cohorts were aged 3 months post injection. This allowed us to test how different tau variants synergise with soluble forms of Aß (pre-deposit cohort) or with frank Aß deposits (post-deposit cohort). RESULTS: Expression of WT tau did not produce NFT or altered Aß in either cohort. In the pre-deposit cohort, S320F tau induced Aß plaque deposition, neuroinflammation and synaptic abnormalities, suggesting that early tau tangles affect the amyloid cascade. In the post-deposit cohort, contemporaneous expression of S320F tau did not exacerbate amyloid pathology, showing a dichotomy in Aß-tau synergy based on the nature of Aß. P301L tau produced NFT-type inclusions in the post-deposit cohort, but not in the pre-deposit cohort, indicating pathological synergy with pre-existing Aß deposits. CONCLUSIONS: Our data show that different tau mutations representing specific folding variants of tau synergise with Aß to different extents, depending on the presence of cerebral deposits.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/metabolismo
16.
Life Sci Alliance ; 4(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34127518

RESUMEN

Aggregation and accumulation of amyloid-ß (Aß) is a defining feature of Alzheimer's disease pathology. To study microglial responses to Aß, we applied exogenous Aß peptide, in either oligomeric or fibrillar conformation, to primary mouse microglial cultures and evaluated system-level transcriptional changes and then compared these with transcriptomic changes in the brains of CRND8 APP mice. We find that primary microglial cultures have rapid and massive transcriptional change in response to Aß. Transcriptomic responses to oligomeric or fibrillar Aß in primary microglia, although partially overlapping, are distinct and are not recapitulated in vivo where Aß progressively accumulates. Furthermore, although classic immune mediators show massive transcriptional changes in the primary microglial cultures, these changes are not observed in the mouse model. Together, these data extend previous studies which demonstrate that microglia responses ex vivo are poor proxies for in vivo responses. Finally, these data demonstrate the potential utility of using microglia as biosensors of different aggregate conformation, as the transcriptional responses to oligomeric and fibrillar Aß can be distinguished.


Asunto(s)
Péptidos beta-Amiloides/genética , Microglía/metabolismo , Ovillos Neurofibrilares/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/fisiología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/fisiología , Cultivo Primario de Células , Transcriptoma/genética
17.
Mol Neurodegener ; 16(1): 32, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957936

RESUMEN

INTRODUCTION: Passive immunotherapies targeting Aß continue to be evaluated as Alzheimer's disease (AD) therapeutics, but there remains debate over the mechanisms by which these immunotherapies work. Besides the amount of preexisting Aß deposition and the type of deposit (compact or diffuse), there is little data concerning what factors, independent of those intrinsic to the antibody, might influence efficacy. Here we (i) explored how constitutive priming of the underlying innate activation states by Il10 and Il6 might influence passive Aß immunotherapy and (ii) evaluated transcriptomic data generated in the AMP-AD initiative to inform how these two cytokines and their receptors' mRNA levels are altered in human AD and an APP mouse model. METHODS: rAAV2/1 encoding EGFP, Il6 or Il10 were delivered by somatic brain transgenesis to neonatal (P0) TgCRND8 APP mice. Then, at 2 months of age, the mice were treated bi-weekly with a high-affinity anti-Aß1-16 mAb5 monoclonal antibody or control mouse IgG until 6 months of age. rAAV mediated transgene expression, amyloid accumulation, Aß levels and gliosis were assessed. Extensive transcriptomic data was used to evaluate the mRNA expression levels of IL10 and IL6 and their receptors in the postmortem human AD temporal cortex and in the brains of TgCRND8 mice, the later at multiple ages. RESULTS: Priming TgCRND8 mice with Il10 increases Aß loads and blocks efficacy of subsequent mAb5 passive immunotherapy, whereas priming with Il6 priming reduces Aß loads by itself and subsequent Aß immunotherapy shows only a slightly additive effect. Transcriptomic data shows that (i) there are significant increases in the mRNA levels of Il6 and Il10 receptors in the TgCRND8 mouse model and temporal cortex of humans with AD and (ii) there is a great deal of variance in individual mouse brain and the human temporal cortex of these interleukins and their receptors. CONCLUSIONS: The underlying immune activation state can markedly affect the efficacy of passive Aß immunotherapy. These results have important implications for ongoing human AD immunotherapy trials, as they indicate that underlying immune activation states within the brain, which may be highly variable, may influence the ability for passive immunotherapy to alter Aß deposition.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunización Pasiva/métodos , Animales , Humanos , Interleucina-10/inmunología , Interleucina-6/inmunología , Ratones , Ratones Transgénicos
18.
NPJ Parkinsons Dis ; 7(1): 30, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741985

RESUMEN

Parkinson's disease (PD) and related synucleinopathies are characterized by chronic neuroinflammation leading to the premise that anti-inflammatory therapies could ameliorate synucleinopathy and associated sequelae. To test this idea, we used recombinant adeno-associated viruses (AAV) to express the anti-inflammatory cytokine, Interleukin (Il)-10, in Line M83 transgenic mice that expresses the PD-associated A53T mutant human α-synuclein (αSyn). Contrary to our expectations, we observed that intraspinal Il-10 expression initiated at birth upregulated microgliosis and led to early death in homozygous M83+/+ mice. We further observed that Il-10 preconditioning led to reduced lifespan in the hemizygous M83+/- mice injected with preformed αSyn aggregates in hindlimb muscles. To determine the mechanistic basis for these adverse effects, we took advantage of the I87A variant Il-10 (vIl-10) that has predominantly immunosuppressive properties. Sustained intraspinal expression of vIl-10 in preformed αSyn-aggregate seeded M83+/- mice resulted in earlier death, accelerated αSyn pathology, pronounced microgliosis, and increased apoptosis compared to control mice. AAV-vIl-10 expression robustly induced p62 and neuronal LC3B accumulation in these mice, indicating that Il-10 signaling mediated preconditioning of the neuraxis can potentially exacerbate αSyn accumulation through autophagy dysfunction in the neurons. Together, our data demonstrate unexpected adverse effects of both Il-10 and its immunosuppressive variant, vIl-10, in a mouse model of PD, highlighting the pleiotropic functions of immune mediators and their complex role in non-cell autonomous signaling in neurodegenerative proteinopathies.

19.
Alzheimers Dement ; 17(6): 984-1004, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33480174

RESUMEN

Intron retention (IR) has been implicated in the pathogenesis of complex diseases such as cancers; its association with Alzheimer's disease (AD) remains unexplored. We performed genome-wide analysis of IR through integrating genetic, transcriptomic, and proteomic data of AD subjects and mouse models from the Accelerating Medicines Partnership-Alzheimer's Disease project. We identified 4535 and 4086 IR events in 2173 human and 1736 mouse genes, respectively. Quantitation of IR enabled the identification of differentially expressed genes that conventional exon-level approaches did not reveal. There were significant correlations of intron expression within innate immune genes, like HMBOX1, with AD in humans. Peptides with a high probability of translation from intron-retained mRNAs were identified using mass spectrometry. Further, we established AD-specific intron expression Quantitative Trait Loci, and identified splicing-related genes that may regulate IR. Our analysis provides a novel resource for the search for new AD biomarkers and pathological mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Autopsia , Encéfalo/patología , Modelos Animales de Enfermedad , Genómica , Intrones/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteómica , Sitios de Carácter Cuantitativo , Transcriptoma
20.
J Alzheimers Dis ; 79(1): 59-70, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33216030

RESUMEN

BACKGROUND: Plasma NfL (pNfL) levels are elevated in many neurological disorders. However, the utility of pNfL in a clinical setting has not been established. OBJECTIVE: In a cohort of diverse older participants, we examined: 1) the association of pNfL to age, sex, Hispanic ethnicity, diagnosis, and structural and amyloid imaging biomarkers; and 2) its association to baseline and longitudinal cognitive and functional performance. METHODS: 309 subjects were classified at baseline as cognitively normal (CN) or with cognitive impairment. Most subjects had structural MRI and amyloid PET scans. The most frequent etiological diagnosis was Alzheimer's disease (AD), but other neurological and neuropsychiatric disorders were also represented. We assessed the relationship of pNfL to cognitive and functional status, primary etiology, imaging biomarkers, and to cognitive and functional decline. RESULTS: pNfL increased with age, degree of hippocampal atrophy, and amyloid load, and was higher in females among CN subjects, but was not associated with Hispanic ethnicity. Compared to CN subjects, pNfL was elevated among those with AD or FTLD, but not those with neuropsychiatric or other disorders. Hippocampal atrophy, amyloid positivity and higher pNfL levels each added unique variance in predicting greater functional impairment on the CDR-SB at baseline. Higher baseline pNfL levels also predicted greater cognitive and functional decline after accounting for hippocampal atrophy and memory scores at baseline. CONCLUSION: pNfL may have a complementary and supportive role to brain imaging and cognitive testing in a memory disorder evaluation, although its diagnostic sensitivity and specificity as a stand-alone measure is modest. In the absence of expensive neuroimaging tests, pNfL could be used for differentiating neurodegenerative disease from neuropsychiatric disorders.


Asunto(s)
Enfermedad de Alzheimer/sangre , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/sangre , Estado Funcional , Proteínas de Neurofilamentos/sangre , Negro o Afroamericano , Factores de Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Atrofia , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Demencia Vascular/sangre , Demencia Vascular/diagnóstico por imagen , Demencia Vascular/fisiopatología , Femenino , Degeneración Lobar Frontotemporal/sangre , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/fisiopatología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hispánicos o Latinos , Humanos , Enfermedad por Cuerpos de Lewy/sangre , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Factores Sexuales , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...