Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Biol ; 19(4)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35545073

RESUMEN

To enhance the stability of protein therapeutics, pharmaceutical companies have long used various copolymer surfactants as excipients. They act to stabilize proteins by adhering to the hydrophobic surface of the protein preventing denaturation and aggregation. However, some commonly used excipients possess polyoxyalkylene chains that are susceptible to oxidative degradation while in aqueous solution. We postulate that oxidation reactions involving the hydrophobic domains reduce the surfactant's ability to stabilize the native protein structure. We investigated the effect of UV (λ = 254 nm) radiated poloxamine T1107 (T1107) on its ability to disaggregate DTT denatured hen egg-white lysozyme (HEWL). Peroxidation of UV irradiated T1107 was analyzed using FTIR spectroscopy, the Fe+2to Fe+3ion reduction assay method, and1H NMR. Our results indicate that increased UV irradiation led to structural changes in T1107, specifically the addition of a carbonyl on the formate group. The structural change decreased T1107's ability to disaggregate HEWL thus supporting our hypothesis. These results indicate that peroxide content is an important parameter to control in polyoxyalkylene-based excipients.


Asunto(s)
Etilenodiaminas , Excipientes , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos
2.
Bioelectromagnetics ; 41(7): 540-551, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32881015

RESUMEN

Electrical stun devices (ESDs) serve a basic role in law enforcement and provide an alternative to lethal options for target control by causing electromuscular incapacitation (EMI). A fundamental concern is the adverse health consequences associated with their use. The capability of EMI electric field pulses to disrupt skeletal muscle cells (i.e. rhabdomyolysis) was investigated over the operational range commonly used in commercial EMI devices. Functional and structural alteration and recovery of muscle and nerve tissue were assessed. In an anesthetized swine model, the left thigh was exposed to 2 min of electrical pulses, using a commercially available ESD or a custom-made EMI signal power amplifier. Serum creatinine phosphokinase (CPK), troponin, aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels were monitored intermittently for 6 h post-EMI exposure. A standard external cardiac defibrillator served as a positive control. Muscle and nerve tissue histology adjacent to the EMI contacts were examined. Post-EMI shock skeletal muscle function was evaluated by analyzing the compound muscle action potentials (CMAPs) of the rectus femoris muscle. Maximal energy cardiac defibrillator pulses resulted in rhabdomyolysis and marked elevation of CPK, LDH, and AST 6 h post-shock. EMI field pulses resulted in the animals developing transient acidosis. CMAP amplitudes decreased approximately 50% after EMI and recovered to near-normal levels within 6 h. Within 6 h post-EMI exposure, blood CPK was mildly increased, LDH was normal, and no arrhythmia was observed. Minimal rhabdomyolysis was produced by the EMI pulses. These results suggest that EMI exposure is unlikely to cause extremity rhabdomyolysis in normal individuals. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.


Asunto(s)
Conductividad Eléctrica/efectos adversos , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Potenciales de Acción , Animales , Regulación de la Expresión Génica , Músculo Esquelético/inervación , Rabdomiólisis/sangre , Rabdomiólisis/etiología , Rabdomiólisis/metabolismo , Rabdomiólisis/patología , Porcinos
3.
Regen Eng Transl Med ; 4(1): 1-10, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30906849

RESUMEN

Structural breakdown of the cell membrane is a primary mediator in trauma induced tissue necrosis. When membrane disruption exceeds intrinsic membrane sealing processes, biocompatible multi-block amphiphilic copolymer surfactants such as Poloxamer 188 (P188) have been found to be effective in catalyze or augment sealing. Although in living cells copolymer induced sealing of membrane defects has been detected by changes in membrane transport properties, it has not been directly imaged. In this project we used Atomic force microscopy (AFM) to directly image saponin permeabilized and poloxamer sealed plasma membranes of monolayer cultured MDCK and 3T3 fibroblasts. AFM image analysis resulted in the density and diameter ranges for membrane indentations per 5×5 µm area. For control, saponin lysed, and P188 treatment of saponin lysed membranes, the supra-threshold indentation density was 3.6 ± 2.8, 13.8 ± 6.7, and 4.9 ± 3.3/cell, respectively. These results indicated that P188 catalyzed reduction in size of AFM indentations which correlated with increase cell survival. This evidence confirm that biocompatible surfactant P188 augment natural cell membrane sealing capability when intrinsic processes are incapable alone.

4.
Int J Radiat Oncol Biol Phys ; 71(2): 542-9, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18474313

RESUMEN

PURPOSE: Tumor hypoxia has long been known to produce resistance to radiation. In this study, electron paramagnetic resonance (EPR) oxygen imaging was investigated for its power to predict the success of tumor control according to tumor oxygenation level and radiation dose. METHODS AND MATERIALS: A total of 34 EPR oxygen images were obtained from the legs of C3H mice bearing 0.5-cm(3) FSa fibrosarcomas under both normal (air breathing) and clamped tumor conditions. Under the same conditions as those during which the images were obtained, the tumors were irradiated to a variety of doses near the FSa dose at which 50% of tumors were cured. Tumor tissue was distinguished from normal tissue using co-registration of the EPR oxygen images with spin-echo magnetic resonance imaging of the tumor and/or stereotactic localization. The tumor voxel statistics in the EPR oxygen image included the mean and median partial pressure of oxygen and the fraction of tumor voxels below the specified partial pressure of oxygen values of 3, 6, and 10 mm Hg. Bivariate logistic regression analysis using the radiation dose and each of the EPR oxygen image statistics to determine which best separated treatment failure from success. RESULTS: The measurements of the dose at which 50% of tumors were cured were similar to those found in published data for this syngeneic tumor. Bivariate analysis of 34 tumors demonstrated that tumor cure correlated with dose (p = 0.004) and with a <10 mm Hg hypoxic fraction (p = 0.023). CONCLUSION: Our results have shown that, together, radiation dose and EPR image hypoxic fraction separate the population of FSa fibrosarcomas that are cured from those that fail, thus predicting curability.


Asunto(s)
Hipoxia de la Célula , Fibrosarcoma/metabolismo , Fibrosarcoma/radioterapia , Oxígeno/análisis , Tolerancia a Radiación/fisiología , Animales , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Fibrosarcoma/fisiopatología , Ratones , Ratones Endogámicos C3H , Consumo de Oxígeno/fisiología , Presión Parcial , Radioterapia/métodos , Dosificación Radioterapéutica , Inducción de Remisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA