Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38651230

RESUMEN

Acute pancreatitis (AP) is a common disease with no targeted therapy and has varied outcomes ranging from spontaneous resolution to being lethal. While typically painful, AP can also be painless. Various agents, including opioids are used for pain control in AP; the risks, and benefits of which are often debated. Since experimental AP in mice is used to study the efficacy of potential therapies, we studied the effect of a commonly used opioid buprenorphine on the initiation and progression of AP. For this we administered extended-release buprenorphine subcutaneously prior to inducing the previously established severe AP model that uses Interleukins 12 and 18 (IL12,18) in genetically obese (ob/ob) mice and compared this to mice with AP but without the drug. Mice were monitored over 3 days and parameters of AP induction and progression were compared. Buprenorphine significantly reduced the serum amylase, lipase, pancreatic necrosis, and AP associated fat necrosis which is ubiquitous in obese mice and humans. Buprenorphine delayed the AP associated reduction of carotid artery pulse distention, and development of hypothermia, hastened renal injury, and muted the early increase in respiratory rate vs. IL12,18 alone. The site of buprenorphine injection appeared erythematous, inflamed, and microscopically showed thinning, loss of epidermal layers which had increased apoptosis. In summary, subcutaneous extended-release buprenorphine interfered with the induction of AP by reducing serum amylase, lipase, pancreatic and fat necrosis, the worsening of AP by delaying hypotension, hypothermia, while hastening renal injury, respiratory depression, and causing cutaneous injury at the site of injection.

2.
Gastroenterology ; 165(4): 999-1015, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263302

RESUMEN

BACKGROUND & AIMS: Although transient bacteremia is common during dental and endoscopic procedures, infections developing during sterile diseases like acute pancreatitis (AP) can have grave consequences. We examined how impaired bacterial clearance may cause this transition. METHODS: Blood samples from patients with AP, normal controls, and rodents with pancreatitis or those administered different nonesterified fatty acids (NEFAs) were analyzed for albumin-unbound NEFAs, microbiome, and inflammatory cell injury. Macrophage uptake of unbound NEFAs using a novel coumarin tracer were done and the downstream effects-NEFA-membrane phospholipid (phosphatidylcholine) interactions-were studied on isothermal titration calorimetry. RESULTS: Patients with infected AP had higher circulating unsaturated NEFAs; unbound NEFAs, including linoleic acid (LA) and oleic acid (OA); higher bacterial 16S DNA; mitochondrial DNA; altered ß-diversity; enrichment in Pseudomonadales; and increased annexin V-positive myeloid (CD14) and CD3-positive T cells on admission. These, and increased circulating dead inflammatory cells, were also noted in rodents with unbound, unsaturated NEFAs. Isothermal titration calorimetry showed progressively stronger unbound LA interactions with aqueous media, phosphatidylcholine, cardiolipin, and albumin. Unbound NEFAs were taken into protein-free membranes, cells, and mitochondria, inducing voltage-dependent anion channel oligomerization, reducing ATP, and impairing phagocytosis. These were reversed by albumin. In vivo, unbound LA and OA increased bacterial loads and impaired phagocytosis, causing infection. LA and OA were more potent for these amphipathic interactions than the hydrophobic palmitic acid. CONCLUSIONS: Release of stored LA and OA can increase their circulating unbound levels and cause amphipathic liponecrosis of immune cells via uptake by membrane phospholipids. This impairs bacterial clearance and causes infection during sterile inflammation.


Asunto(s)
Pancreatitis , Humanos , Enfermedad Aguda , Ácidos Grasos no Esterificados , Ácido Oléico , Inflamación , Albúminas , Fosfatidilcolinas
3.
iScience ; 25(5): 104322, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35502320

RESUMEN

We compared three hospitalized patient cohorts and conducted mechanistic studies to determine if lipotoxicity worsens COVID-19. Cohort-1 (n = 30) compared COVID-19 patients dismissed home to those requiring intensive-care unit (ICU) transfer. Cohort-2 (n = 116) compared critically ill ICU patients with and without COVID-19. Cohort-3 (n = 3969) studied hypoalbuminemia and hypocalcemia's impact on COVID-19 mortality. Patients requiring ICU transfer had higher serum albumin unbound linoleic acid (LA). Unbound fatty acids and LA were elevated in ICU transfers, COVID-19 ICU patients and ICU non-survivors. COVID-19 ICU patients (cohort-2) had greater serum lipase, damage-associated molecular patterns (DAMPs), cytokines, hypocalcemia, hypoalbuminemia, organ failure and thrombotic events. Hypocalcemia and hypoalbuminemia independently associated with COVID-19 mortality in cohort-3. Experimentally, LA reacted with albumin, calcium and induced hypocalcemia, hypoalbuminemia in mice. Endothelial cells took up unbound LA, which depolarized their mitochondria. In mice, unbound LA increased DAMPs, cytokines, causing endothelial injury, organ failure and thrombosis. Therefore, excessive unbound LA in the circulation may worsen COVID-19 outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...