Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 46(3): 469-481, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38368285

RESUMEN

PURPOSE: Based on the clinical need for grafts for vascular tissue regeneration, our group developed a customizable scaffold derived from the human amniotic membrane. Our approach consists of rolling the decellularized amniotic membrane around a mandrel to form a multilayered tubular scaffold with tunable diameter and wall thickness. Herein, we aimed to investigate if silica nanoparticles (SiNP) could enhance the adhesion of the amnion layers within these rolled grafts. METHODS: To test this, we assessed the structural integrity and mechanical properties of SiNP-treated scaffolds. Mechanical tests were repeated after six months to evaluate adhesion stability in aqueous environments. RESULTS: Our results showed that the rolled SiNP-treated scaffolds maintained their tubular shape upon hydration, while non-treated scaffolds collapsed. By scanning electron microscopy, SiNP-treated scaffolds presented more densely packed layers than untreated controls. Mechanical analysis showed that SiNP treatment increased the scaffold's tensile strength up to tenfold in relation to non-treated controls and changed the mechanism of failure from interfacial slipping to single-point fracture. The nanoparticles reinforced the scaffolds both at the interface between two distinct layers and within each layer of the extracellular matrix. Finally, SiNP-treated scaffolds significantly increased the suture pullout force in comparison to untreated controls. CONCLUSION: Our study demonstrated that SiNP prevents the unraveling of a multilayered extracellular matrix graft while improving the scaffolds' overall mechanical properties. In addition to the generation of a robust biomaterial for vascular tissue regeneration, this novel layering technology is a promising strategy for a number of bioengineering applications.


Asunto(s)
Matriz Extracelular , Nanopartículas , Dióxido de Silicio , Andamios del Tejido , Dióxido de Silicio/química , Andamios del Tejido/química , Nanopartículas/química , Humanos , Matriz Extracelular/química , Ingeniería de Tejidos/métodos , Amnios/química , Regeneración/efectos de los fármacos , Resistencia a la Tracción
2.
Biotechnol Lett ; 46(2): 249-261, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279044

RESUMEN

PURPOSE: The limited availability of autologous vessels for vascular bypass surgeries is a major roadblock to treating severe cardiovascular diseases. Based on this clinical priority, our group has developed a novel engineered vascular graft by rolling human amniotic membranes into multilayered extracellular matrixes (ECM). When treated with silica nanoparticles (SiNP), these rolled scaffolds showed a significant improvement in their structural and mechanical properties, matching those from gold standard autologous grafts. However, it remained to be determined how cells respond to SiNP-treated materials. As a first step toward understanding the biocompatibility of SiNP-dosed biomaterials, we aimed to assess how endothelial cells and blood components interact with SiNP-treated ECM scaffolds. METHODS: To test this, we used established in vitro assays to study SiNP and SiNP-treated scaffolds' cyto and hemocompatibility. RESULTS: Our results showed that SiNP effects on cells were concentration-dependent with no adverse effects observed up to 10 µg/ml of SiNP, with higher concentrations inducing cytotoxic and hemolytic responses. The SiNP also enhanced the scaffold's hydrophobicity state, a feature known to inhibit platelet and immune cell adhesion. Accordingly, SiNP-treated scaffolds were also shown to support endothelial cell growth while preventing platelet and leukocyte adhesion. CONCLUSION: Our findings suggest that the addition of SiNP to human amniotic membrane extracellular matrixes improves the cyto- and hemocompatibility of rolled scaffolds and highlights this strategy as a robust mechanism to stabilize layered collagen scaffolds for vascular tissue regeneration.


Asunto(s)
Células Endoteliales , Nanopartículas , Humanos , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Materiales Biocompatibles/farmacología , Matriz Extracelular , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...