Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Immunity ; 57(4): 832-834, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599173

RESUMEN

IL-23 activates pathogenic Th17 cells to drive inflammatory disease at barrier surfaces. Kim et al. now identify oral epithelial cells as the critical producers of IL-23 in human and mouse periodontitis, linking microbial dysbiosis to non-hematopoietic regulation of IL-17-associated inflammation.


Asunto(s)
Inflamación , Periodontitis , Humanos , Animales , Ratones , Inflamación/patología , Células Epiteliales/patología , Interleucina-23 , Células Th17/patología , Disbiosis
2.
Clin Exp Rheumatol ; 42(2): 229-236, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38179816

RESUMEN

OBJECTIVES: There is a paucity of available biomarkers of disease activity in idiopathic inflammatory myopathies (IIM), and serum cytokines/chemokines hold potential as candidate biomarkers. We aimed to determine serum cytokine profiles of IIM patients with active disease as compared to patients in remission and healthy controls. METHODS: The IIM patients with active disease (included patients enrolled in repository corticotropin injection trial), in remission, and healthy controls were enrolled in this cross-sectional observational study. Serum concentrations of 51 cytokines/chemokines were obtained by utilising a bead-based multiplex cytokine assay (Luminex®). The myositis core set measures were obtained for all the patients. Cytokines with the best predictive ability to differentiate these clinical groups were assessed with three methods: 1) Least Absolute Shrinkage and Selection Operator modelling, 2) stepwise approach, and 3) logistic regression model. RESULTS: Twenty-one IIM patients with active disease, 11 IIM patients in remission and 10 healthy controls were enrolled. Myositis patients had elevated levels of chemokines that attract eosinophils (eotaxin) and dendritic cells, NK cells, cytotoxic T-cells and monocytes/macrophages (CXCL-9, IP-10), cytokines that drive T-helper 1 responses (TNF-a, lymphotoxin-a), matrix degrading enzymes (MMP-3 and -9), and IGFBP-2 compared to healthy controls. Myositis patients with active disease had higher levels of lymphotoxin-a, CXCL-9, MIP-1a, MIP-1b and MMP-3 than patients in remission. CONCLUSIONS: This study demonstrated differences in cytokine profiles of IIM patients (active and inactive disease) compared to healthy controls and identified some cytokines that could potentially be used as biomarkers. Larger longitudinal studies are needed to validate our findings.


Asunto(s)
Metaloproteinasa 3 de la Matriz , Miositis , Adulto , Humanos , Linfotoxina-alfa , Estudios Transversales , Citocinas , Quimiocinas , Miositis/diagnóstico , Biomarcadores
3.
Sci Signal ; 16(808): eabo6555, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874883

RESUMEN

The cytokine interleukin-17 (IL-17) is secreted by T helper 17 (TH17) cells and is beneficial for microbial control; however, it also causes inflammation and pathological tissue remodeling in autoimmunity. Hence, TH17 cell differentiation and IL-17 production must be tightly regulated, but, to date, this has been defined only in terms of transcriptional control. Phosphatidylinositols are second messengers produced during T cell activation that transduce signals from the T cell receptor (TCR) and costimulatory receptors at the plasma membrane. Here, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) was enriched in the nuclei of human TH17 cells, which depended on the kinase PIP5K1α, and that inhibition of PIP5K1α impaired IL-17A production. In contrast, nuclear PIP2 enrichment was not observed in TH1 or TH2 cells, and these cells did not require PIP5K1α for cytokine production. In T cells from people with multiple sclerosis, IL-17 production elicited by myelin basic protein was blocked by PIP5K1α inhibition. IL-17 protein was affected without altering either the abundance or stability of IL17A mRNA in TH17 cells. Instead, analysis of PIP5K1α-associating proteins revealed that PIP5K1α interacted with ARS2, a nuclear cap-binding complex scaffold protein, to facilitate its binding to IL17A mRNA and subsequent IL-17A protein production. These findings highlight a transcription-independent, translation-dependent mechanism for regulating IL-17A protein production that might be relevant to other cytokines.


Asunto(s)
Interleucina-17 , Esclerosis Múltiple , Humanos , Diferenciación Celular , Citocinas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Esclerosis Múltiple/genética , Receptores de Antígenos de Linfocitos T/metabolismo , ARN Mensajero/metabolismo , Células Th17
4.
Cell Host Microbe ; 31(10): 1700-1713.e4, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37725983

RESUMEN

Fungal infections are a global threat; yet, there are no licensed vaccines to any fungal pathogens. Th17 cells mediate immunity to Candida albicans, particularly oropharyngeal candidiasis (OPC), but essential downstream mechanisms remain unclear. In the murine model of OPC, IκBζ (Nfkbiz, a non-canonical NF-κB transcription factor) was upregulated in an interleukin (IL)-17-dependent manner and was essential to prevent candidiasis. Deletion of Nfkbiz rendered mice highly susceptible to OPC. IκBζ was dispensable in hematopoietic cells and acted partially in the suprabasal oral epithelium to control OPC. One prominent IκBζ-dependent gene target was ß-defensin 3 (BD3) (Defb3), an essential antimicrobial peptide. Human oral epithelial cells required IκBζ for IL-17-mediated induction of BD2 (DEFB4A, human ortholog of mouse Defb3) through binding to the DEFB4A promoter. Unexpectedly, IκBζ regulated the transcription factor Egr3, which was essential for C. albicans induction of BD2/DEFB4A. Accordingly, IκBζ and Egr3 comprise an antifungal signaling hub mediating mucosal defense against oral candidiasis.


Asunto(s)
Candidiasis Bucal , Candidiasis , Humanos , Ratones , Animales , Candidiasis Bucal/genética , Candidiasis Bucal/microbiología , Candida albicans , Membrana Mucosa , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales
5.
iScience ; 26(6): 106915, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37305694

RESUMEN

Urbanization drives the popularity of western diet (WD), which increased burden in metabolic diseases but also in inflammatory diseases. Here, we show continuous WD disrupted the gut barrier, initiating low-grade inflammation and enhancing the colitis response. Nevertheless, transient WD consumption followed by ad libitum normal diet enhanced mucin production and tight junction protein expression in recovered mice. Furthermore, transient WD consumption surprisingly reduced the subsequent inflammatory response in DSS colitis and Citrobacter rodentium-infection induced colitis. The protective effect of WD training was not sex-dependent, and co-housing experiments suggested microbiota changes were not responsible. We identified important roles for cholesterol biosynthesis pathway and macrophages, pointing to innate myeloid training. Together, these data suggest detrimental effects of WD consumption can be reversed on return to a healthier diet. Furthermore, transient WD consumption leads to beneficial immune training, suggesting an evolutionary mechanism to benefit from feasting when abundant food is available.

7.
Sci Immunol ; 7(77): eabq3254, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36367947

RESUMEN

The cytokine interleukin-23 (IL-23) is critical for development and maintenance of autoimmune inflammation in nonlymphoid tissues; however, the mechanism through which IL-23 supports tissue-specific immunity remains unclear. In mice, we found that circulating memory T cells were dispensable for anamnestic protection from Candida albicans skin infection, and tissue-resident memory (TRM) cell-mediated protection from C. albicans reinfection required IL-23. Administration of anti-IL-23 receptor antibody to mice after resolution of primary C. albicans infection resulted in loss of CD69+ CD103+ tissue-resident memory T helper 17 (TRM17) cells from skin, and clinical anti-IL-23 therapy depleted TRM17 cells from skin of patients with psoriasis. IL-23 receptor blockade impaired TRM17 cell proliferation but did not affect apoptosis susceptibility or tissue egress. IL-23 produced by CD301b+ myeloid cells was required for TRM17 maintenance in skin after C. albicans infection, and CD301b+ cells were necessary for TRM17 expansion during the development of imiquimod dermatitis. This study demonstrates that locally produced IL-23 promotes in situ proliferation of cutaneous TRM17 cells to support their longevity and function and provides mechanistic insight into the durable efficacy of IL-23 blockade in the treatment of psoriasis.


Asunto(s)
Interleucina-23 , Psoriasis , Ratones , Animales , Memoria Inmunológica , Interleucina-17 , Candida albicans/fisiología , Proliferación Celular
8.
Neurotrauma Rep ; 3(1): 340-351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204388

RESUMEN

Interleukin-17 (IL-17) is a proinflammatory cytokine primarily secreted in the brain by inflammatory T lymphocytes and glial cells. IL-17+ T-helper (Th17) cells are increased in the ipsilateral hemisphere after experimental traumatic brain injury (TBI), and IL-17 levels are increased in serum and brain tissue. We hypothesized that il17a and related gene expression would be increased in brain tissue after TBI in mice and il17a-/- mice would demonstrate neuroprotection versus wild type. The controlled cortical impact (CCI) model of TBI in adult male C57BL6/J mice was used for all experiments. Data were analyzed by analysis of variance (ANOVA) or repeated-measures two-way ANOVA with the Bonferroni correction. A value of p < 0.05 determined significance. Expression of il17a was significantly reduced in the ipsilateral cortex and hippocampus by day 3 after TBI, and expression remained low at 28 days. There were no differences between il17a-/- and il17a+/+ mice in beam balance, Morris water maze performance, or lesion volume after CCI. Surprisingly, naïve il17a -/- mice performed significantly (p = 0.02) worse than naïve il17a+/+ mice on the probe trial. In conclusion, sustained depression of il17a gene expression was observed in brains after TBI in adult mice. Genetic knockout of IL-17 was not neuroprotective after TBI. IL-17a may be important for memory retention in naïve mice.

9.
J Immunol ; 209(6): 1138-1145, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35940634

RESUMEN

IL-17 contributes to the pathogenesis of certain autoimmune diseases, but conversely is essential for host defense against fungi. Ab-based biologic drugs that neutralize IL-17 are effective in autoimmunity but can be accompanied by adverse side effects. Candida albicans is a commensal fungus that is the primary causative agent of oropharyngeal and disseminated candidiasis. Defects in IL-17 signaling cause susceptibility to candidiasis in mice and humans. A key facet of IL-17 receptor signaling involves RNA-binding proteins, which orchestrate the fate of target mRNA transcripts. In tissue culture models we showed that the RNA-binding protein AT-rich interaction domain 5A (Arid5a) promotes the stability and/or translation of multiple IL-17-dependent mRNAs. Moreover, during oropharyngeal candidiasis, Arid5a is elevated within the oral mucosa in an IL-17-dependent manner. However, the contribution of Arid5a to IL-17-driven events in vivo is poorly defined. In this study, we used CRISPR-Cas9 to generate mice lacking Arid5a. Arid5a -/- mice were fully resistant to experimental autoimmune encephalomyelitis, an autoimmune setting in which IL-17 signaling drives pathology. Surprisingly, Arid5a -/- mice were resistant to oropharyngeal candidiasis and systemic candidiasis, similar to immunocompetent wild-type mice and contrasting with mice defective in IL-17 signaling. Therefore, Arid5a-dependent signals mediate pathology in autoimmunity and yet are not required for immunity to candidiasis, indicating that selective targeting of IL-17 signaling pathway components may be a viable strategy for development of therapeutics that spare IL-17-driven host defense.


Asunto(s)
Productos Biológicos , Candidiasis , Encefalomielitis Autoinmune Experimental , Animales , Autoinmunidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Interleucina-17/metabolismo , Ratones , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Interleucina-17/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35583818

RESUMEN

Excessive collagen deposition by fibroblasts surrounding some tumors has seriously limited the efficacy of checkpoint inhibitor therapies. Chen et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20210693) show that IL-17 promotes collagen deposition by cancer-associated fibroblasts, enhancing immune exclusion of tumors, and that targeting IL-17-triggered HIF1α expression can reverse matrix mediated immune exclusion.


Asunto(s)
Fibroblastos Asociados al Cáncer , Interleucina-17 , Neoplasias , Fibroblastos Asociados al Cáncer/metabolismo , Humanos , Interleucina-17/metabolismo , Neoplasias/metabolismo , Linfocitos T
11.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34914635

RESUMEN

Stromal cells are emerging as key drivers of autoimmunity, partially because they produce inflammatory chemokines that orchestrate inflammation. Chemokine expression is regulated transcriptionally but also through posttranscriptional mechanisms, the specific drivers of which are still incompletely defined. CCL2 (MCP1) is a multifunctional chemokine that drives myeloid cell recruitment. During experimental autoimmune encephalomyelitis (EAE), an IL-17-driven model of multiple sclerosis, CCL2 produced by lymph node (LN) stromal cells was essential for immunopathology. Here, we showed that Ccl2 mRNA upregulation in human stromal fibroblasts in response to IL-17 required the RNA-binding protein IGF-2 mRNA-binding protein 2 (IGF2BP2, IMP2), which is expressed almost exclusively in nonhematopoietic cells. IMP2 binds directly to CCL2 mRNA, markedly extending its transcript half-life, and is thus required for efficient CCL2 secretion. Consistent with this, Imp2-/- mice showed reduced CCL2 production in LNs during EAE, causing impairments in monocyte recruitment and Th17 cell polarization. Imp2-/- mice were fully protected from CNS inflammation. Moreover, deletion of IMP2 after EAE onset was sufficient to mitigate disease severity. These data showed that posttranscriptional control of Ccl2 in stromal cells by IMP2 was required to permit IL-17-driven progression of EAE pathogenesis.


Asunto(s)
Autoinmunidad , Encefalomielitis Autoinmune Experimental/genética , Regulación de la Expresión Génica , Proteínas de Unión al ARN/genética , Células Th17/inmunología , Regulación hacia Arriba , Animales , Células Cultivadas , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Proteínas de Unión al ARN/biosíntesis , Células Th17/patología
12.
Sci Immunol ; 6(66): eaao3669, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919443

RESUMEN

Prior experience of pathogen-associated stimuli reduces morbidity and mortality to newly encountered infections through innate immune training, which can be enhanced by childhood vaccination. Fibroblastic reticular cells (FRCs) are stromal cells in lymphoid organs that support lymphocyte localization and survival and modulate adaptive immune responses. IL-17 signaling is important for FRC metabolism and proliferation during inflammatory responses. Here, we show that FRC-intrinsic IL-17 signaling was required for protective antibody-mediated immunity to the gut bacterial pathogen Citrobacter rodentium. We asked whether prior activation of FRC through nonspecific inflammatory "training" of the gut would alter subsequent immune response to C. rodentium. Inflammatory training increased the number of activated FRC in mesenteric LN (MLN) and enhanced the antibody response to C. rodentium in an IL-17­dependent manner. FRC demonstrated cardinal features of innate immune training, including increased epigenetic markers of activation and increased metabolic response to infection. Enhanced responses were still evident 6 weeks after training. The kinetics of bacterial infection were not changed by inflammatory training, but colon inflammation was paradoxically reduced. Mechanistically, IL-10 production by activated B cells was required for colon protective effects of inflammatory training. Enhancing tissue protective B cell responses thus led to increased production of antibody and IL-10, allowing clearance of infection with reduced tissue inflammation. These data identify a new mode of immune training through FRC to modulate future adaptive responses and better preserve host health.


Asunto(s)
Linfocitos B/inmunología , Fibroblastos/inmunología , Inmunidad Mucosa/inmunología , Interleucina-10/biosíntesis , Interleucina-17/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Cytokine ; 148: 155715, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587561

RESUMEN

The IL-17 family is structurally distinct from other cytokine subclasses. IL-17A and IL-17F, the most closely related of this family, form homodimers and an IL-17AF heterodimer. While IL-17A and IL-17F exhibit similar activities in many settings, in others their functions are divergent. To better understand the function of IL-17F in vivo, we created mice harboring a mutation in Il17f originally described in humans with unexplained chronic mucosal candidiasis (Ser-65-Leu). We evaluated Il17fS65L/S65L mice in DSS-colitis, as this is one of the few settings where IL-17A and IL-17F exhibit opposing activities. Specifically, IL-17A is protective of the gut epithelium, a finding that was revealed when trials of anti-IL-17A biologics in Crohn's disease failed and recapitulated in many mouse models of colitis. In contrast, mice lacking IL-17F are resistant to DSS-colitis, partly attributable to alterations in intestinal microbiota that mobilize Tregs. Here we report that Il17fS65L/S65L mice do not phenocopy Il17f-/- mice in DSS colitis, but rather exhibited a worsening disease phenotype much like Il17a-/- mice. Gut inflammation in Il17fS65L/S65L mice correlated with reduced Treg accumulation and lowered intestinal levels of Clostridium cluster XIV. Unexpectedly, the protective DSS-colitis phenotype in Il17f-/- mice could be reversed upon co-housing with Il17fS65L/S65L mice, also correlating with Clostridium cluster XIV levels in gut. Thus, the Il17fS65L/S65L phenotype resembles an IL-17A deficiency more closely than IL-17F deficiency in the setting of DSS colitis.


Asunto(s)
Colitis/inducido químicamente , Colitis/genética , Interleucina-17/metabolismo , Mutación/genética , Animales , Colitis/inmunología , Colon/inmunología , Colon/patología , Sulfato de Dextran , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal , Humanos , Interleucina-17/genética , Ratones Endogámicos C57BL , Fenotipo , Receptores de Interleucina-17/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología
15.
J Exp Med ; 218(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33822846

RESUMEN

IL-17 was discovered nearly 30 yr ago, but it has only been recently appreciated that a key function of this cytokine is to orchestrate cellular and organismal metabolism. Indeed, metabolic regulation is integrated into both the physiological and the pathogenic aspects of IL-17 responses. Thus, understanding the interplay between IL-17 and downstream metabolic processes could ultimately inform therapeutic opportunities for diseases involving IL-17, including some not traditionally linked to this cytokine pathway. Here, we discuss the emerging pathophysiological roles of IL-17 related to cellular and organismal metabolism, including metabolic regulation of IL-17 signal transduction.


Asunto(s)
Glucosa/metabolismo , Glucólisis/fisiología , Interleucina-17/metabolismo , Transducción de Señal/fisiología , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Glucólisis/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
16.
Annu Rev Immunol ; 39: 537-556, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33577346

RESUMEN

The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.


Asunto(s)
Enfermedades Autoinmunes , Interleucina-17 , Animales , Enfermedades Autoinmunes/etiología , Citocinas , Humanos , Intención , Receptores de Interleucina-17
17.
J Exp Med ; 217(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32697822

RESUMEN

The STAT3 signaling pathway is required for early Th17 cell development, and therapies targeting this pathway are used for autoimmune disease. However, the role of STAT3 in maintaining inflammatory effector Th17 cell function has been unexplored. Th17ΔSTAT3 mice, which delete STAT3 in effector Th17 cells, were resistant to experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Th17 cell numbers declined after STAT3 deletion, corresponding to reduced cell cycle. Th17ΔSTAT3 cells had increased IL-6-mediated phosphorylation of STAT1, known to have antiproliferative functions. Th17ΔSTAT3 cells also had reduced mitochondrial membrane potential, which can regulate intracellular Ca2+. Accordingly, Th17ΔSTAT3 cells had reduced production of proinflammatory cytokines when stimulated with myelin antigen but normal production of cytokines when TCR-induced Ca2+ flux was bypassed with ionomycin. Thus, early transcriptional roles of STAT3 in developing Th17 cells are later complimented by noncanonical STAT3 functions that sustain pathogenic Th17 cell proliferation and cytokine production.


Asunto(s)
Citocinas/fisiología , Activación de Linfocitos , Factor de Transcripción STAT3/metabolismo , Células Th17/metabolismo , Animales , Antígenos/inmunología , Apoptosis , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Citometría de Flujo , Interleucina-6/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT1/metabolismo
18.
Clin Immunol ; 212: 108360, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32035179

RESUMEN

Rheumatoid arthritis (RA) is characterized by the production of anti-citrullinated protein antibodies (ACPAs). To gain insights into the relationship between ACPA-expressing B cells in peripheral blood (PB) and synovial tissue (ST), we sequenced the B cell repertoire in paired PB and ST samples from five individuals with established, ACPA+ RA. Bioinformatics analysis of paired heavy- and light-chain sequences revealed clonally-related family members shared between PB and ST. ST-derived antibody repertoires exhibited reduced diversity and increased normalized clonal family size compared to PB-derived repertoires. Functional characterization showed that seven recombinant antibodies (rAbs) expressed from subject-derived sequences from both compartments bound citrullinated antigens and immune complexes (ICs) formed using one ST-derived rAb stimulated macrophage TNF-α production. Our findings demonstrate B cell trafficking between PB and ST in subjects with RA and ST repertoires include B cells that encode ACPA capable of forming ICs that stimulate cellular responses implicated in RA pathogenesis.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Artritis Reumatoide/inmunología , Linfocitos B/inmunología , Macrófagos/inmunología , Membrana Sinovial/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Diversidad de Anticuerpos/inmunología , Biología Computacional , Humanos , Activación de Macrófagos/inmunología , Membrana Sinovial/citología
19.
Nat Immunol ; 20(12): 1594-1602, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31745337

RESUMEN

IL-17 is a highly versatile pro-inflammatory cytokine crucial for a variety of processes, including host defense, tissue repair, the pathogenesis of inflammatory disease and the progression of cancer. In contrast to its profound impact in vivo, IL-17 exhibits surprisingly moderate activity in cell-culture models, which presents a major knowledge gap about the molecular mechanisms of IL-17 signaling. Emerging studies are revealing a new dimension of complexity in the IL-17 pathway that may help explain its potent and diverse in vivo functions. Discoveries of new mRNA stabilizers and receptor-directed mRNA metabolism have provided insights into the means by which IL-17 cooperates functionally with other stimuli in driving inflammation, whether beneficial or destructive. The integration of IL-17 with growth-receptor signaling in specific cell types offers new understanding of the mitogenic effect of IL-17 on tissue repair and cancer. This Review summarizes new developments in IL-17 signaling and their pathophysiological implications.


Asunto(s)
Enfermedades del Sistema Inmune/inmunología , Inflamación/inmunología , Interleucina-17/metabolismo , Neoplasias/inmunología , Receptores de Interleucina-7/metabolismo , Animales , Células Cultivadas , Humanos , Transducción de Señal
20.
J Immunol ; 203(3): 665-675, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31209103

RESUMEN

ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is best known for its role in Alzheimer's disease amyloid plaque formation but also contributes to neurodegenerative processes triggered by CNS injury. In this article, we report that BACE1 is expressed in murine CD4+ T cells and regulates signaling through the TCR. BACE1-deficient T cells have reduced IL-17A expression under Th17 conditions and reduced CD73 expression in Th17 and inducible T regulatory cells. However, induction of the Th17 and T regulatory transcription factors RORγt and Foxp3 was unaffected. BACE1-deficient T cells showed impaired pathogenic function in experimental autoimmune encephalomyelitis. These data identify BACE1 as a novel regulator of T cell signaling pathways that impact autoimmune inflammatory T cell function.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Autoinmunidad/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , 5'-Nucleotidasa/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Factores de Transcripción Forkhead/biosíntesis , Interleucina-17/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...