Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 92: 129387, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37369333

RESUMEN

Metallo-ß-lactamases (MBLs) are a group of Zn(II)-dependent enzymes that pose a major threat to global health. They are linked to an increasing number of multi-drug resistant bacterial pathogens, but no clinically useful inhibitor is yet available. Since ß-lactam antibiotics, which are inactivated by MBLs, constitute ∼65% of all antibiotics used to treat infections, the search for clinically relevant MBL inhibitors is urgent. Here, derivatives of a 2-amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (1a) were synthesised and their inhibitory effects assessed against prominent representatives of the MBL family. Several compounds are potent inhibitors of each MBL tested, making them promising candidates for the development of broad-spectrum drug leads. In particular, compound 5f is highly potent across the MBL family, with Ki values in the low µM range. Furthermore, this compound also appears to display synergy in combination with antibiotics such as penicillin G, cefuroxime or meropenem. This molecule thus represents a promising starting point to develop new drugs to inhibit a major mechanism of antibiotic resistance.


Asunto(s)
Inhibidores de beta-Lactamasas , beta-Lactamasas , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/farmacología , Meropenem , Farmacorresistencia Bacteriana Múltiple
2.
Eur J Med Chem ; 254: 115383, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087894

RESUMEN

Purple acid phosphatases (PAPs) are ubiquitous binuclear metallohydrolases that have been isolated from various animals, plants and some types of fungi. In humans and mice, elevated PAP activity in osteoclasts is associated with osteoporosis, making human PAP an attractive target for the development of anti-osteoporotic drugs. Based on previous studies focusing on phosphonate scaffolds, as well as a new crystal structure of a PAP in complex with a derivative of a previously synthesized α-aminonaphthylmethylphosphonic acid, phosphonates 24-40 were designed as new PAP inhibitor candidates. Subsequent docking studies predicted that all of these compounds are likely to interact strongly with the active site of human PAP and most are likely to interact strongly with the active site of pig PAP. The seventeen candidates were synthesized with good yields and nine of them (26-28, 30, 33-36 and 38) inhibit in the sub-micromolar to nanomolar range against pig PAP, with 28 and 35 being the most potent mammalian PAP inhibitors reported with Ki values of 168 nM and 186 nM, respectively. This study thus paves the way for the next stage of drug development for phosphonate inhibitors of PAPs as anti-osteoporotic agents.


Asunto(s)
Organofosfonatos , Osteoporosis , Humanos , Porcinos , Animales , Ratones , Glicoproteínas/química , Fosfatasa Ácida , Plantas , Organofosfonatos/farmacología , Mamíferos
3.
ChemMedChem ; 16(21): 3342-3359, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34331400

RESUMEN

Metallohydrolases form a large group of enzymes that have fundamental importance in a broad range of biological functions. Among them, the purple acid phosphatases (PAPs) have gained attention due to their crucial role in the acquisition and use of phosphate by plants and also as a promising target for novel treatments of bone-related disorders and cancer. To date, no crystal structure of a mammalian PAP with drug-like molecules bound near the active site is available. Herein, we used a fragment-based design approach using structures of a mammalian PAP in complex with the MaybridgeTM fragment CC063346, the amino acid L-glutamine and the buffer molecule HEPES, as well as various solvent molecules to guide the design of highly potent and efficient mammalian PAP inhibitors. These inhibitors have improved aqueous solubility when compared to the clinically most promising PAP inhibitors available to date. Furthermore, drug-like fragments bound in newly discovered binding sites mapped out additional scaffolds for further inhibitor discovery, as well as scaffolds for the design of inhibitors with novel modes of action.


Asunto(s)
Fosfatasa Ácida/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glutamina/farmacología , Fosfatasa Ácida/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glutamina/síntesis química , Glutamina/química , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Porcinos
4.
Chem Biol Drug Des ; 97(5): 1048-1058, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33455074

RESUMEN

Cholinesterase inhibitors remain the mainstay of Alzheimer's disease treatment, and the search for new inhibitors with better efficacy and side effect profiles is ongoing. Virtual screening (VS) is a powerful technique for searching large compound databases for potential hits. This study used a sequential VS workflow combining ligand-based VS, molecular docking and physicochemical filtering to screen for central nervous system (CNS) drug-like acetylcholinesterase inhibitors (AChEIs) amongst the 6.9 million compounds of the CoCoCo database. Eleven in silico hits were initially selected, resulting in the discovery of an AChEI with a Ki of 3.2 µM. In vitro kinetics and in silico molecular dynamics experiments informed the selection of an additional seven analogues. This led to the discovery of two further AChEIs, with Ki values of 2.9 µM and 0.65 µM. All three compounds exhibited reversible, mixed inhibition of acetylcholinesterase. Importantly, the in silico physicochemical filter facilitated the discovery of CNS drug-like compounds, such that all three inhibitors displayed high in vitro blood-brain barrier model permeability.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Sitios de Unión , Butirilcolinesterasa/metabolismo , Dominio Catalítico , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Bases de Datos de Compuestos Químicos , Donepezilo/química , Donepezilo/metabolismo , Donepezilo/uso terapéutico , Electrophorus/metabolismo , Caballos/metabolismo , Cinética , Simulación de Dinámica Molecular , Permeabilidad/efectos de los fármacos
5.
J Med Chem ; 64(3): 1670-1684, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33512163

RESUMEN

New drugs to treat tuberculosis (TB) are urgently needed to combat the increase in resistance observed among the current first-line and second-line treatments. Here, we propose ketol-acid reductoisomerase (KARI) as a target for anti-TB drug discovery. Twenty-two analogues of IpOHA, an inhibitor of plant KARI, were evaluated as antimycobacterial agents. The strongest inhibitor of Mycobacterium tuberculosis (Mt) KARI has a Ki value of 19.7 nM, fivefold more potent than IpOHA (Ki = 97.7 nM). This and four other potent analogues are slow- and tight-binding inhibitors of MtKARI. Three compounds were cocrystallized with Staphylococcus aureus KARI and yielded crystals that diffracted to 1.6-2.0 Å resolution. Prodrugs of these compounds possess antimycobacterial activity against H37Rv, a virulent strain of human TB, with the most active compound having an MIC90 of 2.32 ± 0.04 µM. This compound demonstrates a very favorable selectivity window and represents a highly promising lead as an anti-TB agent.


Asunto(s)
Antituberculosos/farmacología , Herbicidas/farmacología , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Animales , Antituberculosos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Profármacos , Staphylococcus aureus/enzimología
6.
Chemistry ; 27(9): 3130-3141, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33215746

RESUMEN

New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 µm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.


Asunto(s)
Antituberculosos/farmacología , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Pirimidinonas/farmacología , Línea Celular , Humanos , Cetoácido Reductoisomerasa/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , NADP/metabolismo , Staphylococcus aureus/enzimología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
7.
Bioorg Chem ; 105: 104386, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33137556

RESUMEN

Based on a structure-guided approach, aryl sulfonyl hydrazones conjugated with 1,3-diaryl pyrazoles were designed to target metallo-ß-lactamases (MBLs), using Klebsiella pneumoniaeNDM-1 as a model. The in vitro MBLs inhibition showed remarkable inhibition constant for most of the designed compounds at a low micromolar range (1.5-16.4 µM) against NDM-1, IMP-1 and AIM-1 MBLs. Furthermore, all compounds showed promising antibacterial activity against (K+, K1-K9) resistant clinical isolates of K. pneumoniae and were able to re-sensitize resistant K. pneumoniae (K5) strain towards meropenem and cefalexin. Besides, in vivo toxicity testing exhibited that the most active compound was non-toxic and well tolerated by the experimental animals orally up to 350 mg/kg and up to 125 mg/kg parenterally. The docking experiments on NDM-1 and IMP-1 rationalized the observed in vitro MBLs inhibition activity. Generally, this work presents a fruitful matrix to extend the chemical space for MBLs inhibition. This aids in tackling drug-resistance issues in antibacterial treatment.


Asunto(s)
Antibacterianos/farmacología , Hidrazonas/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Pirazoles/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Hidrazonas/síntesis química , Hidrazonas/química , Klebsiella pneumoniae/enzimología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazoles/química , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
8.
Bioorg Med Chem Lett ; 30(24): 127609, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039562

RESUMEN

Acetylcholinesterase inhibitors are the mainstay of Alzheimer's disease treatments, despite having only short-term symptomatic benefits and severe side effects. Selective butyrylcholinesterase inhibitors (BuChEIs) may be more effective treatments in late-stage Alzheimer's disease with fewer side effects. Virtual screening is a powerful tool for identifying potential inhibitors in large digital compound databases. This study used structure-based virtual screening combined with physicochemical filtering to screen the InterBioScreen and Maybridge databases for novel selective BuChEIs. The workflow rapidly identified 22 potential hits in silico, resulting in the discovery of a human BuChEI with low-micromolar potency in vitro (IC50 2.4 µM) and high selectivity for butyrylcholinesterase over acetylcholinesterase. The compound was a rapidly reversible BuChEI with mixed-model in vitro inhibition kinetics. The binding interactions were investigated using in silico molecular dynamics and by developing structure-activity relationships using nine analogues. The compound also displayed high permeability in an in vitro model of the blood-brain barrier.


Asunto(s)
Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
9.
Arch Biochem Biophys ; 692: 108516, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32745463

RESUMEN

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway, is an emerging target for the discovery of biocides. Here, we demonstrate that cyclopropane-1,1-dicarboxylate (CPD) inhibits KARIs from the pathogens Mycobacterium tuberculosis (Mt) and Campylobacter jejuni (Cj) reversibly with Ki values of 3.03 µM and 0.59 µM, respectively. Another reversible inhibitor of both KARIs, Hoe 704, is more potent than CPD with Ki values of 300 nM and 110 nM for MtKARI and CjKARI, respectively. The most potent inhibitor tested here is N-hydroxy-N-isopropyloxamate (IpOHA). It has a Ki of ~26 nM for MtKARI, but binds rather slowly (kon ~900 M-1s-1). In contrast, IpOHA binds more rapidly (kon ~7000 M-1s-1) to CjKARI and irreversibly.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Campylobacter jejuni/enzimología , Inhibidores Enzimáticos/química , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/química , Ciclopropanos/química , Ácidos Dicarboxílicos/química , Ácidos Hidroxámicos/química , Cetoácido Reductoisomerasa/química , Cetoácido Reductoisomerasa/metabolismo , Mycobacterium tuberculosis/química , Compuestos Organofosforados/química
10.
Nature ; 586(7828): 317-321, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32640464

RESUMEN

Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, is a flavin adenine dinucleotide-, thiamine diphosphate- and magnesium-dependent enzyme that catalyses the first step in the biosynthesis of branched-chain amino acids1. It is the target for more than 50 commercial herbicides2. AHAS requires both catalytic and regulatory subunits for maximal activity and functionality. Here we describe structures of the hexadecameric AHAS complexes of Saccharomyces cerevisiae and dodecameric AHAS complexes of Arabidopsis thaliana. We found that the regulatory subunits of these AHAS complexes form a core to which the catalytic subunit dimers are attached, adopting the shape of a Maltese cross. The structures show how the catalytic and regulatory subunits communicate with each other to provide a pathway for activation and for feedback inhibition by branched-chain amino acids. We also show that the AHAS complex of Mycobacterium tuberculosis adopts a similar structure, thus demonstrating that the overall AHAS architecture is conserved across kingdoms.


Asunto(s)
Acetolactato Sintasa/química , Arabidopsis/enzimología , Saccharomyces cerevisiae/enzimología , Acetolactato Sintasa/metabolismo , Adenosina Trifosfato/metabolismo , Aminoácidos de Cadena Ramificada/biosíntesis , Dominio Catalítico , Activación Enzimática , Evolución Molecular , Retroalimentación Fisiológica , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mycobacterium tuberculosis/enzimología , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Valina/metabolismo
12.
Plant Sci ; 294: 110445, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32234228

RESUMEN

Phosphate acquisition by plants is an essential process that is directly implicated in the optimization of crop yields. Purple acid phosphatases (PAPs) are ubiquitous metalloenzymes, which catalyze the hydrolysis of a wide range of phosphate esters and anhydrides. While some plant PAPs display a preference for ATP as the substrate, others are efficient in hydrolyzing phytate or 2-phosphoenolpyruvate (PEP). PAP from red kidney bean (rkbPAP) is an efficient ATP- and ADPase, but has no activity towards phytate. Crystal structures of this enzyme in complex with ATP analogues (to 2.20 and 2.60 Å resolution, respectively) complement the recent structure of rkbPAP with a bound ADP analogue (ChemBioChem 20 (2019) 1536). Together these complexes provide the first structural insight of a PAP in complex with molecules that mimic biologically relevant substrates. Homology modeling was used to generate three-dimensional structures for the active sites of PAPs from tobacco (NtPAP) and thale cress (AtPAP26) that are efficient in hydrolyzing phytate and PEP as preferred substrates, respectively. The combining of crystallographic data, substrate docking simulations and a phylogenetic analysis of 49 plant PAP sequences (including the first PAP sequences reported from Eucalyptus) resulted in the identification of several active site residues that are important in defining the substrate specificities of plant PAPs; of particular relevance is the identification of a motif ("REKA") that is characteristic for plant PAPs that possess phytase activity. These results may inform bioengineering studies aimed at identifying and incorporating suitable plant PAP genes into crops to improve phosphorus acquisition and use efficiency. Organic phosphorus sources increasingly supplement or replace inorganic fertilizer, and efficient phosphorus use of crops will lower the environmental footprint of agriculture while enhancing food production.


Asunto(s)
Fosfatasa Ácida/metabolismo , Fosfatasa Ácida/genética , Bioingeniería/métodos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Phaseolus/genética , Phaseolus/metabolismo , Especificidad por Sustrato
13.
Chemistry ; 26(41): 8958-8968, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32198779

RESUMEN

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway, is a potential drug target for bacterial infections including Mycobacterium tuberculosis. Here, we have screened the Medicines for Malaria Venture Pathogen Box against purified M. tuberculosis (Mt) KARI and identified two compounds that have Ki values below 200 nm. In Mt cell susceptibility assays one of these compounds exhibited an IC50 value of 0.8 µm. Co-crystallization of this compound, 3-((methylsulfonyl)methyl)-2H-benzo[b][1,4]oxazin-2-one (MMV553002), in complex with Staphylococcus aureus KARI, which has 56 % identity with Mt KARI, NADPH and Mg2+ yielded a structure to 1.72 Šresolution. However, only a hydrolyzed product of the inhibitor (i.e. 3-(methylsulfonyl)-2-oxopropanic acid, missing the 2-aminophenol attachment) is observed in the active site. Surprisingly, Mt cell susceptibility assays showed that the 2-aminophenol product is largely responsible for the anti-TB activity of the parent compound. Thus, 3-(methylsulfonyl)-2-oxopropanic acid was identified as a potent KARI inhibitor that could be further explored as a potential biocidal agent and we have shown 2-aminophenol, as an anti-TB drug lead, especially given it has low toxicity against human cells. The study highlights that careful analysis of broad screening assays is required to correctly interpret cell-based activity data.


Asunto(s)
Cetoácido Reductoisomerasa/metabolismo , Magnesio/química , Mycobacterium tuberculosis/enzimología , NADP/química , Staphylococcus aureus/metabolismo , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Humanos , Cetoácido Reductoisomerasa/química , Mycobacterium tuberculosis/química , NADP/metabolismo , Staphylococcus aureus/química
14.
Eur J Med Chem ; 182: 111611, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31445230

RESUMEN

Purple acid phosphatases (PAPs) are binuclear hydrolases that catalyze the hydrolysis of phosphorylated substrates under acidic to neutral conditions. Elevated serum concentrations of PAP are observed in patients suffering from osteoporosis, identifying this enzyme as a potential target for the development of novel therapeutic agents to treat this disease. α-Alkoxy-substituted naphthylmethylphosphonic acid derivatives have been identified previously as molecules that bind with high affinity to PAPs, and docking studies suggest that longer alkyl chains may increase the binding affinities of such compounds. Here, we synthesized several derivatives and tested their inhibitory effect against pig and red kidney bean PAPs. The most potent inhibitor within this series is the octadecyl derivative, which has a Ki value of ∼200 nM. Crystal structures of the dodecyl and octadecyl derivatives bound to red kidney bean PAP show that the length of the alkyl chain influences the ability of the phosphonate group to interact directly with the bimetallic center. These structures represent the first examples of potent inhibitors bound to a PAP that have drug-like properties. This study provides a starting point for the development of much needed new treatments for osteoporosis.


Asunto(s)
Fosfatasa Ácida/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Osteoporosis/tratamiento farmacológico , Fosfatasa Ácida/metabolismo , Animales , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Osteoporosis/metabolismo , Phaseolus/enzimología , Relación Estructura-Actividad , Porcinos
15.
Medchemcomm ; 10(1): 61-71, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30774855

RESUMEN

Transgenic studies in animals have demonstrated a direct association between the level of expression of purple acid phosphatase (PAP; also known as tartrate-resistant acid phosphatase) and the progression of osteoporosis. Consequently, PAP has emerged as a promising target for the development of novel therapeutic agents to treat this debilitating disorder. PAPs are binuclear hydrolases that catalyse the hydrolysis of phosphorylated substrates under acidic to neutral conditions. A series of phenyltriazole carboxylic acids, prepared by the reactions of azide derivatives with propiolic acid through copper(i)-catalysed azide-alkyne cycloaddition click reactions, has been assessed for their inhibitory effect on the catalytic activity of pig and red kidney bean PAPs. The binding mode of most of these compounds is purely uncompetitive with K iuc values as low as ∼23 µM for the mammalian enzyme. Molecular modelling has been used to examine the binding modes of these triazole compounds in the presence of a substrate in the active site of the enzyme in order to rationalise their activities and to design more potent and specific derivatives.

16.
Chembiochem ; 20(12): 1536-1540, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30719821

RESUMEN

Purple acid phosphatases (PAPs) are members of the large family of metallohydrolases, a group of enzymes that perform a wide range of biological functions, while employing a highly conserved catalytic mechanism. PAPs are found in plants, animals and fungi; in humans they play an important role in bone turnover and are thus of interest for developing treatments for osteoporosis. The majority of metallohydrolases use a metal-bound hydroxide to initiate catalysis, which leads to the formation of a proposed five-coordinate oxyphosphorane species in the transition state. In this work, we crystallized PAP from red kidney beans (rkbPAP) in the presence of both adenosine and vanadate. The in crystallo-formed vanadate analogue of ADP provides detailed insight into the binding mode of a PAP substrate, captured in a structure that mimics the putative fivecoordinate transition state. Our observations not only provide unprecedented insight into the mechanism of metallohydrolases, but might also guide the structure-based design of inhibitors for application in the treatment of several human illnesses.


Asunto(s)
Fosfatasa Ácida/química , Proteínas de Plantas/química , Catálisis , Dominio Catalítico , Cinética , Modelos Moleculares , Phaseolus/metabolismo , Vanadatos/química
17.
Eur J Med Chem ; 157: 462-479, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30107365

RESUMEN

Purple acid phosphatases (PAPs) are metalloenzymes that catalyse the hydrolysis of phosphate esters under acidic conditions. Their active site contains a Fe(III)Fe(II) metal centre in mammals and a Fe(III)Zn(II) or Fe(III)Mn(II) metal centre in plants. In humans, elevated PAP levels in serum strongly correlate with the progression of osteoporosis and metabolic bone malignancies, which make PAP a target suitable for the development of chemotherapeutics to combat bone ailments. Due to difficulties in obtaining the human enzyme, the corresponding enzymes from red kidney bean and pig have been used previously to develop specific PAP inhibitors. Here, existing lead compounds were further elaborated to create a series of inhibitors with Ki values as low as ∼30 µM. The inhibition constants of these compounds were of comparable magnitude for pig and red kidney bean PAPs, indicating that relevant binding interactions are conserved. The crystal structure of red kidney bean PAP in complex with the most potent inhibitor in this series, compound 4f, was solved to 2.40 Šresolution. This inhibitor coordinates directly to the binuclear metal centre in the active site as expected based on its competitive mode of inhibition. Docking simulations predict that this compound binds to human PAP in a similar mode. This study presents the first example of a PAP structure in complex with an inhibitor that is of relevance to the development of anti-osteoporotic chemotherapeutics.


Asunto(s)
Fosfatasa Ácida/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Glicoproteínas/antagonistas & inhibidores , Osteoporosis/tratamiento farmacológico , Osteoporosis/enzimología , Fosfatasa Ácida/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glicoproteínas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Phaseolus/enzimología , Relación Estructura-Actividad , Porcinos
18.
Sci Rep ; 8(1): 3871, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497067

RESUMEN

Antibiotic resistance associated with the clinically significant carbapenemases KPC, NDM and OXA-48 in Enterobacteriaceae is emerging as worldwide. In Australia, IMP-producing Enterobacteriaceae are the most prevalent carbapenemase-producing Enterobacteriaceae (CPE). Genomic characteristics of such CPE are well described, but the corresponding proteome is poorly characterised. We have thus developed a method to analyse dynamic changes in the proteome of CPE under antibiotic pressure. Specifically, we have investigated the effect of meropenem at sub-lethal concentrations to develop a better understanding of how antibiotic pressure leads to resistance. Escherichia coli strains producing either NDM-, IMP- or KPC-type carbapenemases were included in this study, and their proteomes were analysed in growth conditions with or without meropenem. The most significant difference in the bacterial proteomes upon the addition of meropenem was triggered amongst NDM-producers and to a lower extent amongst KPC-producers. In particular, HU DNA-binding proteins, the GroEL/GroES chaperonin complex and GrpE proteins were overexpressed. These proteins may thus contribute to the better adaptability of NDM- and KPC-producers to meropenem. A significant meropenem-induced increase in the expression of the outer membrane protein A was only observed in IMP-producers, thus demonstrating that carbapenemase-mediated resistance relies on far more complex mechanisms than simple inactivation of the antibiotic.


Asunto(s)
Escherichia coli/efectos de los fármacos , Meropenem/farmacología , Proteoma/metabolismo , Antibacterianos/farmacología , Australia , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana/métodos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
19.
Chemistry ; 23(72): 18289-18295, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28975665

RESUMEN

Ketol-acid reductoisomerase (KARI) is an NAD(P)H and Mg2+ -dependent enzyme of the branched-chain amino acid (BCAA) biosynthesis pathway. Here, the first crystal structures of Staphylococcus aureus (Sa) KARI in complex with two transition state analogues, cyclopropane-1,1-dicarboxylate (CPD) and N-isopropyloxalyl hydroxamate (IpOHA) are reported. These compounds bind competitively and in multi-dentate manner to KARI with Ki values of 2.73 µm and 7.9 nm, respectively; however, IpOHA binds slowly to the enzyme. Interestingly, intact IpOHA is present in only ≈25 % of binding sites, whereas its deoxygenated form is present in the remaining sites. This deoxy form of IpOHA binds rapidly to Sa KARI, but with much weaker affinity (Ki =21 µm). Thus, our data pinpoint the origin of the slow binding mechanism of IpOHA. Furthermore, we propose that CPD mimics the early stage of the catalytic reaction (preceding the reduction step), whereas IpOHA mimics the late stage (after the reduction took place). These structural insights will guide strategies to design potent and rapidly binding derivatives of these compounds for the development of novel biocides.


Asunto(s)
Proteínas Bacterianas/química , Ciclopropanos/química , Ácidos Dicarboxílicos/química , Ácidos Hidroxámicos/química , Cetoácido Reductoisomerasa/química , Staphylococcus aureus/enzimología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X/métodos , Cetoácido Reductoisomerasa/metabolismo , Modelos Moleculares , NAD/química , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Termodinámica
20.
Org Biomol Chem ; 15(37): 7887-7893, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28891574

RESUMEN

Recently we reported the aromatic Claisen rearrangements of benzyl ketene acetals, which form one of the few examples of aromatic Claisen rearrangements involving benzyl vinyl ethers (as opposed to allyl aryl ethers, which are the usual substrates for aromatic Claisen rearrangements). Theoretical calculations predict that these rearrangements proceed via a concerted [3,3]-sigmatropic transition state, which is similar in geometry to the TS for the Claisen rearrangement of an allyl aryl ether but has a 4 kcal mol-1 higher barrier. The effects of donor (OMe) and acceptor (CN) substituents on the kinetics of the [3,3]-rearrangement mirror those reported for allyl vinyl ethers: the largest substituent effects are seen for 1-OMe, 2-OMe, 2-CN, and 4-CN substituents, which lower the barrier by 5-9 kcal mol-1. Substituents on the aromatic ring have smaller effects on the barrier (≤2 kcal mol-1). The regioselectivities of Claisen rearrangements of meta-substituted benzyl ketene acetals favour 1,2,3-trisubstituted products in preference to the less sterically congested 1,2,4-isomers due to favourable orbital interactions in the 1,2,3 transition state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...