Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 8(11): 4207-4215, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874627

RESUMEN

There has been considerable interest in detecting atmospheric and process-associated methane (CH4) at low concentrations due to its potency as a greenhouse gas. Nanosensor technology, particularly fluorescent single-walled carbon nanotube (SWCNT) arrays, is promising for such applications because of their chemical sensitivities at single-molecule detection limits. However, the methodologies for connecting the stochastic molecular fluctuations from gas impingement on such sensors require further development. In this work, we synthesize Pd-conjugated ss(GT)15-DNA-wrapped SWCNTas near-infrared (nIR) fluorescent, single-molecule sensors of CH4. The complexes are characterized using X-ray photoelectron spectroscopy (XPS) and spectrophotometry, demonstrating spectral changes between the Pd2+ and Pd0 oxidation states. The nIR fluctuations generated upon exposure from 8 to 26 ppb of CH4 were separated into high- and low-frequency components. Aggregating the low-frequency components for an array of sensors showed the most consistent levels of detection with a limit of 0.7 ppb. These results advance the hardware and computational methods necessary to apply this approach to the challenge of environmental methane sensing.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Paladio , Metano , Nanotecnología , Colorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...