Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS One ; 19(3): e0301005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547106

RESUMEN

During the oestrous cycle, the bovine endometrium undergoes morphological and functional changes, which are regulated by alterations in the levels of oestrogen and progesterone and consequent changes in gene expression. To clarify these changes before and after oestrus, RNA-seq was used to profile the transcriptome of oestrus-synchronized beef heifers. Endometrial samples were collected from 29 animals, which were slaughtered in six groups beginning 12 h after the withdrawal of intravaginal progesterone releasing devices until seven days post-oestrus onset (luteal phase). The groups represented proestrus, early oestrus, metoestrus and early dioestrus (luteal phase). Changes in gene expression were estimated relative to gene expression at oestrus. Ingenuity Pathway Analysis (IPA) was used to identify canonical pathways and functional processes of biological importance. A total of 5,845 differentially expressed genes (DEGs) were identified. The lowest number of DEGs was observed at the 12 h post-oestrus time point, whereas the greatest number was observed at Day 7 post-oestrus onset (luteal phase). A total of 2,748 DEGs at this time point did not overlap with any other time points. Prior to oestrus, Neurological disease and Organismal injury and abnormalities appeared among the top IPA diseases and functions categories, with upregulation of genes involved in neurogenesis. Lipid metabolism was upregulated before oestrus and downregulated at 48h post-oestrus, at which point an upregulation of immune-related pathways was observed. In contrast, in the luteal phase the Lipid metabolism and Small molecule biochemistry pathways were upregulated.


Asunto(s)
Estro , Progesterona , Bovinos , Animales , Femenino , Progesterona/metabolismo , Endometrio/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
2.
Front Genet ; 10: 1215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850069

RESUMEN

While over ten thousand genetic loci have been associated with phenotypic traits and inherited diseases in genome-wide association studies, in most cases only a relatively small proportion of the trait heritability is explained and biological mechanisms underpinning these traits have not been clearly identified. Expression quantitative trait loci (eQTL) are subsets of genomic loci shown experimentally to influence gene expression. Since gene expression is one of the primary determinants of phenotype, the identification of eQTL may reveal biologically relevant loci and provide functional links between genomic variants, gene expression and ultimately phenotype. Skeletal muscle (gluteus medius) gene expression was quantified by RNA-seq for 111 Thoroughbreds (47 male, 64 female) in race training at a single training establishment sampled at two time-points: at rest (n = 92) and four hours after high-intensity exercise (n = 77); n = 60 were sampled at both time points. Genotypes were generated from the Illumina Equine SNP70 BeadChip. Applying a False Discovery Rate (FDR) corrected P-value threshold (P FDR < 0.05), association tests identified 3,583 cis-eQTL associated with expression of 1,456 genes at rest; 4,992 cis-eQTL associated with the expression of 1,922 genes post-exercise; 1,703 trans-eQTL associated with 563 genes at rest; and 1,219 trans-eQTL associated with 425 genes post-exercise. The gene with the highest cis-eQTL association at both time-points was the endosome-associated-trafficking regulator 1 gene (ENTR1; Rest: P FDR = 3.81 × 10-27, Post-exercise: P FDR = 1.66 × 10-24), which has a potential role in the transcriptional regulation of the solute carrier family 2 member 1 glucose transporter protein (SLC2A1). Functional analysis of genes with significant eQTL revealed significant enrichment for cofactor metabolic processes. These results suggest heritable variation in genomic elements such as regulatory sequences (e.g. gene promoters, enhancers, silencers), microRNA and transcription factor genes, which are associated with metabolic function and may have roles in determining end-point muscle and athletic performance phenotypes in Thoroughbred horses. The incorporation of the eQTL identified with genome and transcriptome-wide association may reveal useful biological links between genetic variants and their impact on traits of interest, such as elite racing performance and adaptation to training.

3.
BMC Genomics ; 19(1): 438, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29866048

RESUMEN

BACKGROUND: Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for the production of embryos in mammalian livestock. The use of these techniques, however, is not without consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses (herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing was used to validate four loci identified as differentially methylated on the array and to assess the differentially methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential functional consequences of these differences. RESULTS: Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED); 0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses, respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology and growth. CONCLUSION: By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of superovulation alone has the largest impact on the DNA methylome of subsequent embryos.


Asunto(s)
Bovinos/embriología , Bovinos/genética , Metilación de ADN , Técnicas Reproductivas Asistidas , Trofoblastos/metabolismo , Animales , Sitios Genéticos/genética
4.
BMC Genomics ; 18(1): 595, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28793853

RESUMEN

BACKGROUND: A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise. RESULTS: An extensive set of genes was observed to be significantly differentially regulated in response to a single bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several biological processes related to energy metabolism were common to both the exercise and training responses. We then developed a novel network-based computational analysis pipeline to test the hypothesis that these transcriptional changes also influence the contextual molecular interactome and its dynamics in response to exercise and training. The contextual network analysis identified several important hub genes, including the autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative interactions 're-wired' in the exercise and/or training responses. CONCLUSION: Here we have generated for the first time, a comprehensive set of genes that are differentially expressed in Thoroughbred skeletal muscle in response to both exercise and training. These data indicate that consecutive bouts of high-intensity exercise result in a priming of the skeletal muscle transcriptome for the demands of the next exercise bout. Furthermore, this may also lead to an extensive 're-wiring' of the molecular interactome in both exercise and training and include key genes and functional modules related to autophagy and the mitochondrion.


Asunto(s)
Adaptación Fisiológica , Autofagosomas/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Perfilación de la Expresión Génica , Caballos , Mitocondrias/genética , Análisis de Secuencia de ARN
5.
PLoS Negl Trop Dis ; 10(9): e0005015, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27661612

RESUMEN

BACKGROUND: Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts' immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines. METHODOLOGY/PRINCIPAL FINDINGS: This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC) response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS), respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18) or activated (e.g. miR155-5p) in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including 'Transforming Growth Factor Beta (TGFß) signaling', 'Production of Nitric Oxide in Macrophages', 'Toll-like Receptor (TLRs) Signaling', 'Death Receptor Signaling' and 'IL17 Signaling'. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed. SIGNIFICANCE: In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq). This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines.

6.
Epilepsy Behav Case Rep ; 6: 42-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27504264

RESUMEN

Atypical benign partial epilepsy (ABPE) of childhood or pseudo-Lennox syndrome is a form of idiopathic focal epilepsy characterized by multiple seizure types, focal and/or generalized epileptiform discharges, continuous spike-wave during sleep (CSWS), and sometimes reversible neurocognitive deficits. There are few reported cases of ABPE describing detailed correlative longitudinal follow-up of the various associated neurocognitive, language, social communicative, or motor deficits, in parallel with the epilepsy. Furthermore, the molecular inheritance pattern for ABPE and the wider spectrum of epilepsy aphasia disorders have yet to be fully elucidated. We describe the phenotype-genotype study of a boy with ABPE with follow-up from ages 5 to 13 years showing acquired oromotor and, later, a specific lexical semantic and pervasive developmental disorder. Exome sequencing identified variants in SCN9A, CPA6, and SCNM1. A direct role of the epilepsy in the pathogenesis of the oromotor and neurocognitive deficits is apparent.

7.
BMC Bioinformatics ; 17: 126, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26968614

RESUMEN

BACKGROUND: Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. RESULTS: We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. CONCLUSIONS: GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.


Asunto(s)
Biología Computacional/métodos , Ontología de Genes , Programas Informáticos , Aprendizaje Automático Supervisado , Transcriptoma , ARN Mensajero
8.
Hum Mol Genet ; 25(9): 1824-35, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26908619

RESUMEN

Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. Whilst >450 skeletal dysplasias have been reported, 30% are genetically uncharacterized. We report two Irish Traveller families with a previously undescribed lethal skeletal dysplasia characterized by fetal akinesia, shortening of all long bones, multiple contractures, rib anomalies, thoracic dysplasia, pulmonary hypoplasia and protruding abdomen. Single nucleotide polymorphism homozygosity mapping and whole exome sequencing identified a novel homozygous stop-gain mutation in NEK9 (c.1489C>T; p.Arg497*) as the cause of this disorder. NEK9 encodes a never in mitosis gene A-related kinase involved in regulating spindle organization, chromosome alignment, cytokinesis and cell cycle progression. This is the first disorder to be associated with NEK9 in humans. Analysis of NEK9 protein expression and localization in patient fibroblasts showed complete loss of full-length NEK9 (107 kDa). Functional characterization of patient fibroblasts showed a significant reduction in cell proliferation and a delay in cell cycle progression. We also provide evidence to support possible ciliary associations for NEK9. Firstly, patient fibroblasts displayed a significant reduction in cilia number and length. Secondly, we show that the NEK9 orthologue in Caenorhabditis elegans, nekl-1, is almost exclusively expressed in a subset of ciliated cells, a strong indicator of cilia-related functions. In summary, we report the clinical and molecular characterization of a lethal skeletal dysplasia caused by NEK9 mutation and suggest that this disorder may represent a novel ciliopathy.


Asunto(s)
Ciclo Celular/fisiología , Cilios/patología , Genes Recesivos/genética , Mutación/genética , Quinasas Relacionadas con NIMA/genética , Osteocondrodisplasias/etiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Masculino , Osteocondrodisplasias/patología , Linaje , Polimorfismo de Nucleótido Simple/genética
9.
Genome Biol ; 16: 234, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26498365

RESUMEN

BACKGROUND: Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. RESULTS: Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. CONCLUSIONS: This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought.


Asunto(s)
Bovinos/genética , Evolución Molecular , Animales , Inglaterra , Europa (Continente) , Extinción Biológica , Variación Genética , Genómica , Filogeografía , Rumiantes/clasificación , Rumiantes/genética , Análisis de Secuencia de ADN
10.
Sci Rep ; 5: 13629, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26346536

RESUMEN

Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Mycobacterium bovis/inmunología , Tuberculosis Bovina/genética , Tuberculosis Bovina/inmunología , Animales , Gatos , Bovinos , Biología Computacional/métodos , ARN Helicasas DEAD-box/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Lisosomas/metabolismo , Macrófagos Alveolares/inmunología , Masculino , Anotación de Secuencia Molecular , Receptores Citoplasmáticos y Nucleares/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Transcriptoma , Tuberculosis Bovina/microbiología
11.
PLoS One ; 10(5): e0124823, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25978040

RESUMEN

Texel lambs are known to be more resistant to gastrointestinal nematode (GIN) infection than Suffolk lambs, with a greater ability to limit infection. The objectives of this study were to: 1) profile the whole transcriptome of abomasal lymph node tissue of GIN-free Texel and Suffolk lambs; 2) identify differentially expressed genes and characterize the immune-related biological pathways and networks associated with these genes. Abomasal lymph nodes were collected from Texel (n = 6) and Suffolk (n = 4) lambs aged 19 weeks that had been GIN-free since 6 weeks of age. Whole transcriptome profiling was performed using RNA-seq on the Illumina platform. At the time of conducting this study, a well annotated Ovine genome was not available and hence the sequence reads were aligned with the Bovine (UMD3.1) genome. Identification of differentially expressed genes was followed by pathway and network analysis. The Suffolk breed accounted for significantly more of the differentially expressed genes, (276 more highly expressed in Suffolk v 162 in Texel; P < 0.001). The four most significant differentially expressed pathways were all related to immunity and were classified as: Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses, Activation of IRF by Cytosolic Pattern Recognition Receptors, Role of RIG-I-like Receptors in Antiviral Innate Immunity, and Interferon Signaling. Of significance is the fact that all of these four pathways were more highly expressed in the Suffolk. These data suggest that in a GIN-free environment, Suffolk lambs have a more active immune profile relative to the Texel: this immune profile may contribute to the poorer efficiency of response to a GIN challenge in the Suffolk breed compared to the Texel breed.


Asunto(s)
Ganglios Linfáticos/metabolismo , Nematodos/patogenicidad , Infecciones por Nematodos/genética , Infecciones por Nematodos/parasitología , Enfermedades de las Ovejas/genética , Animales , Bovinos , Ovinos , Enfermedades de las Ovejas/parasitología , Transcriptoma/genética
12.
Eur J Hum Genet ; 23(2): 210-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24824133

RESUMEN

We present a study of five children from three unrelated Irish Traveller families presenting with primary ciliary dyskinesia (PCD). As previously characterized disorders in the Irish Traveller population are caused by common homozygous mutations, we hypothesised that all three PCD families shared the same recessive mutation. However, exome sequencing showed that there was no pathogenic homozygous mutation common to all families. This finding was supported by histology, which showed that each family has a different type of ciliary defect; transposition defect (family A), nude epithelium (family B) and absence of inner and outer dynein arms (family C). Therefore, each family was analysed independently using homozygosity mapping and exome sequencing. The affected siblings in family A share a novel 1 bp duplication in RSPH4A (NM_001161664.1:c.166dup; p.Arg56Profs*11), a radial-spoke head protein involved in ciliary movement. In family B, we identified three candidate genes (CCNO, KCNN3 and CDKN1C), with a 5-bp duplication in CCNO (NM_021147.3:c.258_262dup; p.Gln88Argfs*8) being the most likely cause of ciliary aplasia. This is the first study to implicate CCNO, a DNA repair gene reported to be involved in multiciliogenesis, in PCD. In family C, we identified a ∼3.5-kb deletion in DYX1C1, a neuronal migration gene previously associated with PCD. This is the first report of a disorder in the relatively small Irish Traveller population to be caused by >1 disease gene. Our study identified at least three different PCD genes in the Irish Traveller population, highlighting that one cannot always assume genetic homogeneity, even in small consanguineous populations.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Heterogeneidad Genética , Niño , Trastornos de la Motilidad Ciliar/diagnóstico , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Proteínas del Citoesqueleto , ADN Glicosilasas/genética , Epitelio/patología , Femenino , Homocigoto , Humanos , Irlanda , Masculino , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
13.
Reprod Fertil Dev ; 27(5): 725-38, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25200708

RESUMEN

Sperm undergo some of the most extensive chromatin modifications seen in mammalian biology. During male germline development, paternal DNA methylation marks are erased and established on a global scale through waves of demethylation and de novo methylation. As spermatogenesis progresses, the majority of the histones are removed and replaced by protamines, enabling a tighter packaging of the DNA and transcriptional shutdown. Following fertilisation, the paternal genome is rapidly reactivated, actively demethylated, the protamines are replaced with histones and the embryonic genome is activated. The development of new assays, made possible by high-throughput sequencing technology, has resulted in the revisiting of what was considered settled science regarding the state of DNA packaging in mammalian spermatozoa. Researchers have discovered that not all histones are replaced by protamines and, in certain experiments, various species of RNA have been detected in what was previously considered transcriptionally quiescent spermatozoa. Most controversially, several groups have suggested that environmental modifications of the epigenetic state of spermatozoa may operate as a non-DNA-based form of inheritance, a process known as 'transgenerational epigenetic inheritance'. Other developments in the field include the increased focus on the involvement of short RNAs, such as microRNAs, long non-coding RNAs and piwi-interacting RNAs. There has also been an accumulation of evidence illustrating associations between defects in sperm DNA packaging and disease and fertility. In this paper we review the literature, recent findings and areas of controversy associated with epigenetic processes in the male germline, focusing on DNA methylation dynamics, non-coding RNAs, the biology of sperm chromatin packaging and transgenerational inheritance.


Asunto(s)
Epigénesis Genética , Células Germinativas/metabolismo , Espermatogénesis/genética , Animales , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Espermatozoides/metabolismo
14.
Epilepsia ; 55(6): 858-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24828792

RESUMEN

OBJECTIVE: To establish the genetic basis of Landau-Kleffner syndrome (LKS) in a cohort of two discordant monozygotic (MZ) twin pairs and 11 isolated cases. METHODS: We used a multifaceted approach to identify genetic risk factors for LKS. Array comparative genomic hybridization (CGH) was performed using the Agilent 180K array. Whole genome methylation profiling was undertaken in the two discordant twin pairs, three isolated LKS cases, and 12 control samples using the Illumina 27K array. Exome sequencing was undertaken in 13 patients with LKS including two sets of discordant MZ twins. Data were analyzed with respect to novel and rare variants, overlapping genes, variants in reported epilepsy genes, and pathway enrichment. RESULTS: A variant (cG1553A) was found in a single patient in the GRIN2A gene, causing an arginine to histidine change at site 518, a predicted glutamate binding site. Following copy number variation (CNV), methylation, and exome sequencing analysis, no single candidate gene was identified to cause LKS in the remaining cohort. However, a number of interesting additional candidate variants were identified including variants in RELN, BSN, EPHB2, and NID2. SIGNIFICANCE: A single mutation was identified in the GRIN2A gene. This study has identified a number of additional candidate genes including RELN, BSN, EPHB2, and NID2. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Asunto(s)
Síndrome de Landau-Kleffner/genética , Adolescente , Adulto , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Niño , Hibridación Genómica Comparativa , Proteínas de la Matriz Extracelular/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Receptor EphB2/genética , Receptores de N-Metil-D-Aspartato/genética , Proteína Reelina , Serina Endopeptidasas/genética , Gemelos Monocigóticos/genética , Adulto Joven
15.
Eur J Med Genet ; 57(2-3): 55-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24503146

RESUMEN

We report on clinical and genetic studies in a non-consanguineous Irish sib-pair with infantile dilated cardiomyopathy and retinopathy. A diagnosis of Alström Syndrome (AS) was considered and diagnostic testing pursued. The Alströms gene (ALMS1) is very large (23 exons) and diagnostic testing of mutational hotspots (exon 6, 8 and 10) was negative. Furthermore the siblings were tall and did not have the typical phenotype of nystagmus, photophobia, obesity or hearing loss and so the AS diagnosis was removed. We then sought to identify the causative gene in this family using whole exome sequencing. Unexpectedly, the exome analysis identified novel compound heterozygous ALMS1 mutations in exon 5 (c.777delT:p.D260fs*26) and exon 20 (c.12145_12146insC:p.S4049fs*36) that segregated with the phenotype. Although the siblings show some clinical overlap with AS, their phenotype is not classical. It is plausible that their atypical presentation may be due to the location of the ALMS1 mutations outside the usual mutational hotspots. Our findings show how atypical cases of AS may be missed under the current diagnostic guidelines and support consideration of complete ALMS1 sequencing in children with two or more features, even if all of the core clinical features of AS are not present.


Asunto(s)
Síndrome de Alstrom/diagnóstico , Síndrome de Alstrom/genética , Mutación , Proteínas/genética , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Proteínas de Ciclo Celular , Niño , Preescolar , Análisis Mutacional de ADN , Exones , Femenino , Orden Génico , Humanos , Lactante , Masculino , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética
16.
Reproduction ; 147(5): 575-87, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24478148

RESUMEN

The aims of this study were (i) to characterize the global changes in the composition of the uterine luminal fluid (ULF) from pregnant heifers during pregnancy recognition (day 16) using nano-LC MS/MS; (ii) to describe quantitative changes in selected proteins in the ULF from days 10, 13, 16 and 19 by Isobaric tags for Relative and Absolute Quantification (iTRAQ) analysis; and (iii) to determine whether these proteins are of endometrial or conceptus origin, by examining the expression profiles of the associated transcripts by RNA sequencing. On day 16, 1652 peptides were identified in the ULF by nano-LC MS/MS. Of the most abundant proteins present, iTRAQ analysis revealed that RPB4, TIMP2 and GC had the same expression pattern as IFNT, while the abundance of IDH1, CST6 and GDI2 decreased on either day 16 or 19. ALDOA, CO3, GSN, HSP90A1, SERPINA31 and VCN proteins decreased on day 13 compared with day 10 but subsequently increased on day 16 (P<0.05). Purine nucleoside phosphorylase (PNP) and HSPA8 decreased on day 13, increased on day 16 and decreased and increased on day 19 (P<0.05). The abundance of CATD, CO3, CST6, GDA, GELS, IDHC, PNPH and TIMP2 mRNAs was greater (P<0.001) in the endometrium than in the conceptus. By contrast, the abundance of ACTB, ALDOA, ALDR, CAP1, CATB, CATG, GD1B, HSP7C, HSP90A, RET4 and TERA was greater (P<0.05) in the conceptus than in the endometrium. In conclusion, significant changes in the protein content of the ULF occur during the pre-implantation period of pregnancy reflecting the morphological changes that occur in the conceptus.


Asunto(s)
Bovinos/fisiología , Desarrollo Embrionario/fisiología , Preñez/fisiología , Proteómica , Útero/fisiología , Animales , Endometrio/fisiología , Femenino , Fructosa-Bifosfato Aldolasa/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Choque Térmico/fisiología , Embarazo , Proteínas Gestacionales/fisiología
17.
Eur J Hum Genet ; 22(4): 505-10, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23982692

RESUMEN

Episodic ataxias (EAs) are rare neurological channelopathies that are characterized by spells of imbalance and a lack of co-ordination. There are seven clinically recognized EAs and multiple isolated cases. Five disease-causing genes have been identified to date. We describe a novel form of autosomal dominant EA in a large three-generation Irish family. This form of EA presents in early childhood with periods of unsteadiness generalized weakness and slurred speech during an attack, which may be triggered by physical tiredness or stress. Linkage analysis undertaken in 13 related individuals identified a single disease locus (1p36.13-p34.3) with a LOD score of 3.29. Exome sequencing was performed. Following data analysis, which included presence/absence within the linkage peak, two candidate variants were identified. These are located in the HSPG2 and UBR4 genes. UBR4 is an ubiquitin ligase protein that is known to interact with calmodulin, a Ca(2+) protein, in the cytoplasm. It also co-localizes with ITPR1 a calcium release channel that is a major determinant of mammal co-ordination. Although UBR4 is not an ion channel gene, the potential for disrupted Ca(2+) control within neuronal cells highlights its potential for a role in this form of EA.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Proteínas del Citoesqueleto/genética , Sitios Genéticos , Adolescente , Adulto , Ataxia/diagnóstico , Ataxia/genética , Niño , Preescolar , Cromosomas Humanos Par 13 , Exoma , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Irlanda , Escala de Lod , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Ubiquitina-Proteína Ligasas , Adulto Joven
18.
BMC Genomics ; 14: 321, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23663413

RESUMEN

BACKGROUND: We hypothesized that genes that are up-regulated in the uterine endometrium at the initiation of conceptus elongation in cattle, and that encode for secreted proteins, contribute to the composition of the uterine luminal fluid (ULF) and ultimately, drive conceptus elongation. The aims of this study were to: 1) screen endometrial transcriptomic data for genes that encode secreted proteins on Day 13; 2) determine temporal changes in the expression of these genes during the estrous cycle/early pregnancy; 3) determine if expression of these genes is affected by altered concentrations of progesterone (P4) in vivo and 4) determine if the protein products of these genes are detectable in ULF. RESULTS: Of the fourteen candidate genes examined, quantitative real-time PCR analysis revealed the expression of APOA1, ARSA, DCN, LCAT, MUC13, NCDN, NMN, NPNT, NXPH3, PENK, PLIN2 and TINAGL1 was modulated in the endometrium (P<0.05) as the estrous cycle/early pregnancy progressed. APOA1, DCN and NPNT expression was higher in cyclic compared to pregnant heifers, and pregnancy increased (P<0.05) the expression of LCAT, NCDN, NMN, PLIN2 and TINAGL1. The magnitude of the increase in expression of APOA1, PENK and TINAGL1 on Day 13 was reduced (P<0.05) in heifers with low P4. Furthermore, low P4 decreased (P<0.05) the expression of LCAT and NPNT on Day 7, while an early increase (P<0.05) in the expression of NXPH3 and PLIN2 was observed in heifers with high P4. The protein products of 5 of the candidate genes (APOA1, ARSA, LCAT, NCDN and PLIN) were detected in the ULF on either Days 13, 16 or 19 of pregnancy. CONCLUSION: Using a candidate gene approach, we determined that both P4 concentration and the presence of the conceptus alter endometrial expression of PLIN2, TINAGL1, NPNT, LCAT, NMN and APOA1. Comparison of the expression profiles of these genes to proteins detected in ULF during conceptus elongation (i.e., Days 13 through 19) revealed the presence of APOA1, ARSA, LCAT, NCDN as well as members of the PLIN family of proteins that may play roles in driving conceptus elongation in cattle.


Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Endometrio/metabolismo , Perfilación de la Expresión Génica , Proteínas/genética , Proteínas/metabolismo , Animales , Bovinos , Implantación del Embrión/genética , Embrión de Mamíferos/citología , Endometrio/embriología , Estro/genética , Femenino , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Progesterona/metabolismo , Análisis de Secuencia de ARN , Factores de Tiempo
19.
Curr Opin Chem Biol ; 17(1): 4-11, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23290152

RESUMEN

The transcriptomics field has developed rapidly with the advent of next-generation sequencing technologies. RNA-seq has now displaced microarrays as the preferred method for gene expression profiling. The comprehensive nature of the data generated has been a boon in terms of transcript identification but analysis challenges remain. Key among these problems is the development of suitable expression metrics for expression level comparisons and methods for identification of differentially expressed genes (and exons). Several approaches have been developed but as yet no consensus exists on the best pipeline to use. De novo transcriptome approaches are increasingly viable for organisms lacking a sequenced genome. The reduction in starting RNA required has enabled the development of new applications such as single cell transcriptomics. The emerging picture of mammalian transcription is complex with further refinement expected with the integration of epigenomic data generated by projects such as ENCODE.


Asunto(s)
Biología Computacional/métodos , ARN/genética , Transcriptoma , Animales , Epigénesis Genética , Humanos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
20.
Physiol Genomics ; 44(24): 1165-78, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23092952

RESUMEN

Mucus within the cervical canal represents a hormonally regulated barrier that reconciles the need to exclude the vaginal microflora from the uterus during progesterone dominance, while permitting sperm transport at estrus. Its characteristics change during the estrous cycle to facilitate these competing functional requirements. Hydrated mucin glycoproteins synthesized by the endocervical epithelium form the molecular scaffold of this mucus. This study uses the bovine cervix as a model to examine functional groups of genes related to mucin biosynthesis and mucus production over the periestrous period when functional changes in cervical barrier function are most prominent. Cervical tissue samples were collected from 30 estrus synchronized beef heifers. Animals were slaughtered in groups starting 12 h after the withdrawal of intravaginal progesterone releasing devices (controlled internal drug releases) until 7 days postonset of estrus (luteal phase). Subsequent groupings represented proestrus, early estrus, late estrus, metestrus, and finally the early luteal phase. Tissues were submitted to next generation RNA-seq transcriptome analysis. We identified 114 genes associated with biosynthesis and intracellular transport of mucins, and postsecretory modifications of cervical; 53 of these genes showed at least a twofold change in one or more experimental group in relation to onset of estrus, and the differences between groups were significant (P < 0.05). The majority of these genes showed the greatest alteration in their expression in the 48 h postestrus and luteal phase groups.


Asunto(s)
Cuello del Útero/metabolismo , Ciclo Estral/metabolismo , Mucinas/biosíntesis , Moco/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Bovinos , Células Epiteliales/metabolismo , Epitelio/metabolismo , Femenino , Regulación de la Expresión Génica , Homeostasis/genética , Hormonas/metabolismo , Espacio Intracelular/metabolismo , Mucinas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA