Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559059

RESUMEN

The apolipoprotein ε4 allele ( APOE4 ) is associated with decreased longevity, increased vulnerability to age-related declines, and disorders across multiple systems. Interventions that promote healthspan and lifespan represent a promising strategy to attenuate the development of APOE4 -associated aging phenotypes. Here we studied the ability of the longevity-promoting intervention 17α-estradiol (17αE2) to protect against age-related impairments in APOE4 versus the predominant APOE3 genotype using early middle-aged mice with knock-in of human APOE alleles. Beginning at age 10 months, male APOE3 or APOE4 mice were treated for 20 weeks with 17αE2 or vehicle then compared for indices of aging phenotypes body-wide. Across peripheral and neural measures, APOE4 was associated with poorer outcomes. Notably, 17αE2 treatment improved outcomes in a genotype-dependent manner favoring APOE4 mice. These data demonstrate a positive APOE4 bias in 17αE2-mediated healthspan actions, suggesting that longevity-promoting interventions may be useful in mitigating deleterious age-related risks associated with APOE4 genotype.

2.
PLoS One ; 18(11): e0294859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38032907

RESUMEN

The mammalian innate immune system is sex-dimorphic. Neutrophils are the most abundant leukocyte in humans and represent innate immunity's first line of defense. We previously found that primary mouse bone marrow neutrophils show widespread sex-dimorphism throughout life, including at the transcriptional level. Extracellular matrix [ECM]-related terms were observed among the top sex-dimorphic genes. Since the ECM is emerging as an important regulator of innate immune responses, we sought to further investigate the transcriptomic profile of primary mouse bone marrow neutrophils at both the bulk and single-cell level to understand how biological sex may influence ECM component expression in neutrophils throughout life. Here, using curated gene lists of ECM components and unbiased weighted gene co-expression network analysis [WGCNA], we find that multiple ECM-related gene sets show widespread female-bias in expression in primary mouse neutrophils. Since many immune-related diseases (e.g., rheumatoid arthritis) are more prevalent in females, our work may provide insights into the pathogenesis of sex-dimorphic inflammatory diseases.


Asunto(s)
Médula Ósea , Neutrófilos , Humanos , Ratones , Animales , Femenino , Neutrófilos/metabolismo , Leucocitos , Inmunidad Innata/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Mamíferos
3.
bioRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292896

RESUMEN

The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one full-length transcript from 87.7% of annotated human protein coding genes and a total of 200,000 full-length transcripts, 40% of which have novel exon junction chains. To capture and compute on the three sources of transcript structure diversity, we introduce a gene and transcript annotation framework that uses triplets representing the transcript start site, exon junction chain, and transcript end site of each transcript. Using triplets in a simplex representation demonstrates how promoter selection, splice pattern, and 3' processing are deployed across human tissues, with nearly half of multi-transcript protein coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated across samples, the predominantly expressed transcript changes for 74% of protein coding genes. In evolution, the human and mouse transcriptomes are globally similar in types of transcript structure diversity, yet among individual orthologous gene pairs, more than half (57.8%) show substantial differences in mechanism of diversification in matching tissues. This initial large-scale survey of human and mouse long-read transcriptomes provides a foundation for further analyses of alternative transcript usage, and is complemented by short-read and microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4 collection.

4.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36909511

RESUMEN

The mammalian innate immune system is sex-dimorphic. Neutrophils are the most abundant leukocyte in humans and represent innate immunity's first line of defense. We previously found that primary mouse bone marrow neutrophils show widespread sex-dimorphism throughout life, including at the transcriptional level. Extracellular matrix [ECM]-related terms were observed among the top sex-dimorphic genes. Since the ECM is emerging as an important regulator of innate immune responses, we sought to further investigate the transcriptomic profile of primary mouse bone marrow neutrophils at both the bulk and single-cell level to understand how biological sex may influence ECM component expression in neutrophils throughout life. Here, using curated gene lists of ECM components and unbiased weighted gene co-expression network analysis [WGCNA], we find that multiple ECM-related gene sets show widespread female-bias in expression in primary mouse neutrophils. Since many immune-related diseases (e.g., rheumatoid arthritis) are more prevalent in females, our work may provide insights into the pathogenesis of sex-dimorphic inflammatory diseases.

5.
Nat Aging ; 2(3): 189-191, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36157102

RESUMEN

While investigating sex-differences in T-cell aging, Mkhikian et al., identified a role for excessive IL-7 signaling and N-glycan branching in age-related mouse and human female T-cell dysfunction. These findings point to the increasingly-recognized importance of the impact of biological sex on immune aging and delineate new targetable pathways in age-related immune dysfunction.


Asunto(s)
Envejecimiento , Senescencia Celular , Humanos , Femenino , Animales , Ratones , Caracteres Sexuales , Linfocitos T
6.
STAR Protoc ; 2(4): 100948, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820637

RESUMEN

Studies involving neutrophils are steadily increasing, thus creating a need for more optimized and thorough protocols for studying neutrophil function. Here, we present our protocol for extracting mouse bone marrow neutrophils, estimating the purity of isolated neutrophils, and assessing their ability to induce NETosis upon an external cue. We test two isolation protocols that can be used to attain neutrophils to assess NETosis induction. This approach allows for the parallel assessment of NETosis induction in cohorts larger than 10 samples. For complete details on the use and execution of this protocol, please refer to Lu et al., 2021.


Asunto(s)
Trampas Extracelulares/metabolismo , Citometría de Flujo/métodos , Neutrófilos/citología , Animales , Células Cultivadas , Femenino , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...