Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 38(2): e9674, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124168

RESUMEN

RATIONALE: Metabolism and diet quality play an important role in determining delay mechanisms between an animal ingesting an element and depositing the associated isotope signal in tissue. While many isotope mixing models assume instantaneous reflection of diet in an animal- tissue, this is rarely the case. Here we use data from wildebeest to measure the lag time between ingestion of 34 S and its detection in tail hair. METHODS: We use time-lagged regression analysis of δ34 S data from GPS-collared blue wildebeest from the Serengeti ecosystem in combination with δ34 S isoscape data to estimate the lag time between an animal ingesting and depositing 34 S in tail hair. RESULTS: The best fitting regression model of δ34 S in tail hair and an individual- position on the δ34 S isoscape is generated assuming an average time delay of 78 days between ingestion and detection in tail hair. This suggests that sulfur may undergo multiple metabolic transitions before being deposited in tissue. CONCLUSION: Our findings help to unravel the underlying complexities associated with sulfur metabolism and are broadly consistent with results from other species. These findings will help to inform research aiming to apply the variation of δ34 S in inert biological material for geolocation or understanding dietary changes, especially for fast moving migratory ungulates such as wildebeest.


Asunto(s)
Antílopes , Isótopos de Azufre , Animales , Antílopes/metabolismo , Dieta/veterinaria , Ingestión de Alimentos , Cabello/química , Azufre , Isótopos de Azufre/análisis
2.
J Fish Biol ; 103(2): 378-392, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37213138

RESUMEN

Sympatric flatfish predators may partition their resources in coastal environments to reduce competition and maximise foraging efficiency. However, the degree of spatial and temporal consistency in their trophic ecology is not well understood because dietary studies tend to overlook the heterogeneity of consumed prey. Increasing the spatial and temporal scale of dietary analyses can thus help to resolve predator resource use. We applied a stomach content and multi-tissue (liver and muscle) stable isotope (δ13 C, δ15 N and δ34 S) approach to investigate the feeding habits of two co-occurring flatfish predators, common dab (Limanda limanda) and European plaice (Pleuronectes platessa), across four bays on the Northumberland coast (UK) over short (hours), medium (days) and long (months) temporal scales. Stomach content analyses showed spatial consistencies in predator resource use, whereas stable isotope mixing models revealed considerable inter-bay diet variability. Stomach contents also indicated high dietary overlap between L. limanda and P. platessa, while the stable isotope data yielded low to moderate levels of overlap, with cases of complete niche separation. Furthermore, individual specialisation metrics indicated consistently low levels of specialisation among conspecifics over time. We document changes in resource partitioning in space and time, reflecting diet switching in response to local and temporal fluctuations of patchily distributed prey. This study highlights how trophic tracers integrated at multiple temporal and spatial scales (within tens of kilometres) provide a more integrative approach for assessing the trophic ecology of sympatric predators in dynamic environments.


Asunto(s)
Peces Planos , Lenguado , Animales , Peces Planos/fisiología , Ecología , Estado Nutricional , Cadena Alimentaria , Isótopos/análisis
3.
Mar Environ Res ; 186: 105925, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36857940

RESUMEN

Molluscs are among the organisms affected by ocean acidification (OA), relying on carbon for shell biomineralization. Metabolic and environmental sourcing are two pathways potentially affected by OA, but the circumstances and patterns by which they are altered are poorly understood. From previous studies, mollusc shells grown under OA appear smaller in size, brittle and thinner, suggesting an important alteration in carbon sequestration. However, supplementary feeding experiments have shown promising results in offsetting the negative consequences of OA on shell growth. Our study compared carbon uptake by δ13C tracing and deposition into mantle tissue and shell layers in Magallana gigas and Mytilus species, two economically valuable and common species. After subjecting the species to 7.7 pH, +2 °C seawater, and enhanced feeding, both species maintain shell growth and metabolic pathways under OA without benefitting from extra feeding, thus, showing effective acclimation to rapid and short-term environmental change. Mytilus spp. increases metabolic carbon into the calcite and environmental sourcing of carbon into the shell aragonite in low pH and high temperature conditions. Low pH affects M. gigas mantle nitrogen isotopes maintaining growth. Calcite biomineralization pathway differs between the two species and suggests species-specific response to OA.


Asunto(s)
Mytilus , Ostreidae , Animales , Biomineralización , Agua de Mar/química , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Carbonato de Calcio/metabolismo , Carbono/metabolismo , Dióxido de Carbono/análisis , Exoesqueleto/química
4.
J Fish Biol ; 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099820

RESUMEN

Seasonal differences in the availability of resources potentially result in the food web architecture also varying through time. Stable isotope analyses are a logistically simple but powerful tool for inferring trophic interactions and food web structure, but relatively few studies quantify seasonal variations in the food web structure or nutrient flux across multiple trophic levels. We determined the temporal dynamics in stable isotope compositions (carbon, nitrogen and sulphur) of a fish community from a highly seasonal, temperate estuary sampled monthly over a full annual cycle. Sulphur isotope values in fish tissues discriminated among consumers exploiting pelagic and benthic resources but showed no seasonal variation. This implied limited change in the relative consumption of pelagic and benthic resources by the fish community over the study period despite major seasonal changes in phytoplankton biomass. Conversely, carbon and nitrogen isotope values exhibited seasonality marked by the commencement of the spring phytoplankton bloom and peak chlorophyll concentration, with δ13 C values following expected trends in phytoplankton growth physiology and variation in δ15 N values coinciding with changes in major nitrogen sources to plankton between nitrate and ammonium. Isotope shifts in fish muscle were detected within 2 weeks of the peak spring phytoplankton bloom, suggesting a rapid trophic transfer of carbon and nitrogen along food chains within the estuarine food web during periods of high production. Therefore we caution against the assumption that temporal averaging effectively dampens isotopic variability in tissues of higher trophic-level animals in highly dynamic ecosystems, such as temperate estuaries. This work highlights how stable isotope analyses can be combined with environmental data to gain a broader understanding of ecosystem functioning, while emphasising the need for temporally appropriate sampling in stable isotope-based studies.

5.
Environ Pollut ; 297: 118841, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026328

RESUMEN

Antarctic marine ecosystems are often considered to be pristine environments, yet wildlife in the polar regions may still be exposed to high levels of environmental contaminants. Here, we measured total mercury (THg) concentrations in blood samples from adult brown skuas Stercorarius antarcticus lonnbergi (n = 82) from three breeding colonies south of the Antarctic Polar Front in the Southern Ocean (southwest Atlantic region): (i) Bahía Esperanza/Hope Bay, Antarctic Peninsula; (ii) Signy Island, South Orkney Islands; and, (iii) Bird Island, South Georgia. Blood THg concentrations increased from the Antarctic Peninsula towards the Antarctic Polar Front, such that Hg contamination was lowest at Bahía Esperanza/Hope Bay (mean ± SD, 0.95 ± 0.45 µg g-1 dw), intermediate at Signy Island (3.42 ± 2.29 µg g-1 dw) and highest at Bird Island (4.47 ± 1.10 µg g-1 dw). Blood THg concentrations also showed a weak positive correlation with δ15N values, likely reflecting the biomagnification process. Males had higher Hg burdens than females, which may reflect deposition of Hg into eggs by females or potentially differences in their trophic ecology. These data provide important insights into intraspecific variation in contamination and the geographic transfer of Hg to seabirds in the Southern Ocean.


Asunto(s)
Mercurio , Animales , Regiones Antárticas , Ecosistema , Monitoreo del Ambiente , Femenino , Masculino , Mercurio/análisis , Océanos y Mares , Caracteres Sexuales
6.
Sci Total Environ ; 764: 142890, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33131861

RESUMEN

This study quantifies and compares concentrations and profiles of legacy and alternative (alt-) brominated flame retardants (BFRs) in the eggs of three gull (Laridae) species of international/UK conservation concern - great black-backed gulls (Larus marinus; n = 7), European herring gulls (L. argentatus; n = 16) and lesser black-backed gulls (L. fuscus; n = 11) in relation to their foraging ecology and behaviour in order to investigate potential exposure pathways at a remote landfill in western Scotland, UK. Egg concentrations of sum (∑) polybrominated diphenyl ethers (∑8PBDEs) in all three species exceeded those for most reported avian species using landfill, except for those in North America. Despite relatively high detection frequencies of ∑hexabromocyclododecanes (∑3HBCDDs) (94-100%), concentrations of ∑8PBDEs exceeded ∑3HBCDDs and ∑5alt-BFRs, with ∑8PBDE levels similar in all three species. Egg carbon isotopic (δ13C) values highlighted a greater marine dietary input in great black-backed gulls that was consistent with their higher BDE-47 levels; otherwise, dietary tracers were minimally correlated with measured BFRs. ∑3HBCDD egg concentrations of herring gulls markedly exceeded those reported elsewhere in Europe. Decabromodiphenylethane (DBDPE) was the only alt-BFR detected (6-14% detection rate), in a single egg of each species. The great black-backed gull egg contained the highest concentration of DBDPE measured in biota to date globally and provides strong evidence for its emerging environmental presence as a BDE-209 replacement in UK wildlife. Correlations between δ13C (dietary source) and some measured BFRs in eggs suggest multiple routes of BFR exposure for gulls frequenting landfill through their diet, behaviour, preening, dermal exposure and likely inhalation. The frequent use of landfill by herring gulls and their increased egg BFR burdens suggest that this species may be an important bioindicator of BFR emissions from such sites.


Asunto(s)
Charadriiformes , Retardadores de Llama , Animales , Monitoreo del Ambiente , Europa (Continente) , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , América del Norte , Escocia , Reino Unido , Instalaciones de Eliminación de Residuos
7.
Proc Biol Sci ; 287(1941): 20202683, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33352077

RESUMEN

Mercury (Hg) is an environmental contaminant which, at high concentrations, can negatively influence avian physiology and demography. Albatrosses (Diomedeidae) have higher Hg burdens than all other avian families. Here, we measure total Hg (THg) concentrations of body feathers from adult grey-headed albatrosses (Thalassarche chrysostoma) at South Georgia. Specifically, we (i) analyse temporal trends at South Georgia (1989-2013) and make comparisons with other breeding populations; (ii) identify factors driving variation in THg concentrations and (iii) examine relationships with breeding success. Mean ± s.d. feather THg concentrations were 13.0 ± 8.0 µg g-1 dw, which represents a threefold increase over the past 25 years at South Georgia and is the highest recorded in the Thalassarche genus. Foraging habitat, inferred from stable isotope ratios of carbon (δ13C), significantly influenced THg concentrations-feathers moulted in Antarctic waters had far lower THg concentrations than those moulted in subantarctic or subtropical waters. THg concentrations also increased with trophic level (δ15N), reflecting the biomagnification process. There was limited support for the influence of sex, age and previous breeding outcome on feather THg concentrations. However, in males, Hg exposure was correlated with breeding outcome-failed birds had significantly higher feather THg concentrations than successful birds. These results provide key insights into the drivers and consequences of Hg exposure in this globally important albatross population.


Asunto(s)
Aves , Monitoreo del Ambiente , Mercurio , Contaminantes Químicos del Agua , Animales , Regiones Antárticas , Cruzamiento , Ecología , Ecosistema , Plumas , Cadena Alimentaria , Isótopos , Masculino , Estado Nutricional
8.
Mov Ecol ; 8: 37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32968486

RESUMEN

BACKGROUND: Current animal tracking studies are most often based on the application of external geolocators such as GPS and radio transmitters. While these technologies provide detailed movement data, they are costly to acquire and maintain, which often restricts sample sizes. Furthermore, deploying external geolocators requires physically capturing and recapturing of animals, which poses an additional welfare concern. Natural biomarkers provide an alternative, non-invasive approach for addressing a range of geolocation questions and can, because of relatively low cost, be collected from many individuals thereby broadening the scope for population-wide inference. METHODS: We developed a low-cost, minimally invasive method for distinguishing between local versus non-local movements of cattle using sulfur isotope ratios (δ34S) in cattle tail hair collected in the Greater Serengeti Ecosystem, Tanzania. RESULTS: We used a Generalized Additive Model to generate a predicted δ34S isoscape across the study area. This isoscape was constructed using spatial smoothers and underpinned by the positive relationship between δ34S values and lithology. We then established a strong relationship between δ34S from recent sections of cattle tail hair and the δ34S from grasses sampled in the immediate vicinity of an individual's location, suggesting δ34S in the hair reflects the δ34S in the environment. By combining uncertainty in estimation of the isoscape, with predictions of tail hair δ34S given an animal's position in the isoscape we estimated the anisotropic distribution of travel distances across the Serengeti ecosystem sufficient to detect movement using sulfur stable isotopes. CONCLUSIONS: While the focus of our study was on cattle, this approach can be modified to understand movements in other mobile organisms where the sulfur isoscape is sufficiently heterogeneous relative to the spatial scale of animal movements and where tracking with traditional methods is difficult.

9.
Glob Chang Biol ; 26(4): 2496-2504, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32100446

RESUMEN

Carbon sequestration by sediments and vegetated marine systems contributes to atmospheric carbon drawdown, but little empirical evidence is available to help separate the effects of climate change and other anthropogenic activities on carbon burial over centennial timescales. We used marine sediment organic carbon to determine the role of historic climate variability and human habitation in carbon burial over the past 5,071 years. There was centennial-scale sensitivity of carbon supply and burial to climatic variability, with Little Ice Age cooling causing an abrupt ecosystem shift and an increase in marine carbon contributions compared to terrestrial carbon. Although land use changes during the late 1800s did not cause marked alteration in average carbon burial, they did lead to marked increases in the spatial variability of carbon burial. Thus, while carbon burial by vegetated systems is expected to increase with projected climate warming over the coming century, ecosystem restructuring caused by abrupt climate change may produce unexpected change in carbon burial whose variability is also modulated by land use change.

10.
Glob Chang Biol ; 25(12): 4105-4115, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31554025

RESUMEN

Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2 ) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild-type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high-resolution electron backscatter diffraction and carbon isotope analyses (as δ13 C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate-driven change to habitat acidification.


Asunto(s)
Biomineralización , Ostreidae , Animales , Calcificación Fisiológica , Concentración de Iones de Hidrógeno , Agua de Mar
11.
Mov Ecol ; 7: 1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30693085

RESUMEN

BACKGROUND: In long-lived seabirds that migrate large distances independently of each other, the early part of the breeding season is crucially important for a successful reproductive attempt. During this phase, pair bonds are re-established and partners coordinate their breeding duties. We studied the early breeding season in Thin-billed prions Pachyptila belcheri breeding in the Atlantic Ocean (Falkland/Malvinas Islands) and Indian Ocean (Kerguelen). Despite overlap in the wintering areas, these two populations exhibit differences in their timing and direction of migration. We hypothesised that these differences would influence behaviour during the early breeding season. RESULTS: In line with our hypothesis, we found very strong differences in colony attendance patterns. Thin-billed prions of the Falkland population spent the late winter period over shelf waters close to the colony, first arrived back at the colony in September, and attended the nests interruptedly for one month, before departing on a pre-laying exodus. In contrast, Kerguelen birds remained in the non-breeding areas until mid-October and spent much less time attending the burrow before their pre-laying exodus. Despite this asynchronous arrival to the two colonies, the subsequent patterns resulted in remarkably synchronous incubation in both populations, with males taking on the first long incubation shift in late November, whereas females returned to sea soon after egg laying. During the pre-laying exodus and incubation, Thin-billed prions from the Falklands spread north over the Patagonian Shelf, while prions from Kerguelen travelled much further, reaching southern oceanic waters and moved at faster speeds (> 400 km per day). Although prions from Kerguelen moved much further, their isotopic niches were considerably narrower, suggesting a stronger dependence on Antarctic waters. CONCLUSIONS: The study thus suggests that Thin-billed prions show a high intraspecific plasticity in their use of either neritic or oceanic waters during the early breeding season. Breeding birds from the Falkland Islands can exploit an extensive shelf area, while Kerguelen birds have adapted to the need to forage in distant southern open waters. This difference in foraging ecology may thus have shaped the phenology of the early breeding phase.

12.
Biol Lett ; 13(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29093176

RESUMEN

Predation occurs when an organism completely or partially consumes its prey. Partial consumption is typical of herbivores but is also common in some marine microbenthic carnivores that feed on colonial organisms. Associations between nudibranch molluscs and colonial hydroids have long been assumed to be simple predator-prey relationships. Here we show that while the aeolid nudibranch Cratena peregrina does prey directly on the hydranths of Eudendrium racemosum, it is stimulated to feed when hydranths have captured and are handling prey, thus ingesting recently captured plankton along with the hydroid polyp such that plankton form at least half of the nudibranch diet. The nudibranch is thus largely planktivorous, facilitated by use of the hydroid for prey capture. At the scale of the colony this combines predation with kleptoparasitism, a type of competition that involves the theft of already-procured items to form a feeding mode that does not fit into existing classifications, which we term kleptopredation. This strategy of subsidized predation helps explain how obligate-feeding nudibranchs obtain sufficient energy for reproduction from an ephemeral food source.


Asunto(s)
Gastrópodos/fisiología , Hidrozoos/fisiología , Plancton , Animales , Conducta de Elección , Dieta , Conducta Alimentaria , Conducta Predatoria
13.
Sci Rep ; 7(1): 5014, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694437

RESUMEN

Animals often show reduced reproductive success in urban compared to adjacent natural areas. The lower availability and quality of natural food in cities is suggested as one key limiting factor. However, only few studies have provided conclusive support by simultaneously assessing food availability, diet and fitness. We consolidate this evidence by taking a holistic approach, comparing blue tits breeding in forest, suburban and urban areas. We (a) assessed arthropod availability, (b) investigated parental provisioning behaviour, (c) inferred diet through stable isotope analysis, and (d) measured reproductive success. At the urban site, we found a significant reduction in caterpillar availability, the main food source of blue tits, and consequently urban tits fed their offspring with fewer caterpillars than forest and suburban birds. Stable isotope analysis confirmed that diet in the urban area was fundamentally different than in the other sites. Reproductive success was lower in both urban and suburban sites compared to the forest site, and was positively associated with volume of provisioned caterpillars. Our findings provide strong integrative evidence that urban blue tit nestlings are not receiving a suitable diet, and this may be an important limiting factor for urban populations of this and potentially many other species.


Asunto(s)
Alimentación Animal/análisis , Passeriformes/fisiología , Animales , Conducta Animal , Cruzamiento , Marcaje Isotópico , Reproducción , Población Urbana
14.
Bull Environ Contam Toxicol ; 97(2): 184-90, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27329112

RESUMEN

To monitor environmental pollutants in Faroese biota, samples from a top predator were analysed and put into a spatial and temporal context. Analysis of 20 Great Skua eggs sampled in 2012 from the Faroe Islands showed >70 % lower concentrations of legacy persistent organic pollutants (POPs) than in samples analysed in 1977. The 2012 Faroese eggs showed higher concentrations than for eggs in Shetland from about the same period (2008). Eggshells were analysed for sub-lethal effects but there were no detectable effects of legacy POP levels on eggshell colour or thickness. A temporal decline in legacy POPs would indicate a reduction in the general pollutant levels present in the environment as has been shown in other areas of the North Atlantic, but there are significant geographic differences in POPs levels likely due to differences in diet resulting in significantly different exposures on a relatively limited spatial scale.


Asunto(s)
Charadriiformes/metabolismo , Monitoreo del Ambiente , Contaminantes Ambientales/metabolismo , Animales , Dinamarca , Cáscara de Huevo/química , Escocia
15.
J Anim Ecol ; 85(1): 199-212, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26439671

RESUMEN

Understanding interspecific interactions, and the influences of anthropogenic disturbance and environmental change on communities, are key challenges in ecology. Despite the pressing need to understand these fundamental drivers of community structure and dynamics, only 17% of ecological studies conducted over the past three decades have been at the community level. Here, we assess the trophic structure of the procellariiform community breeding at South Georgia, to identify the factors that determine foraging niches and possible temporal changes. We collected conventional diet data from 13 sympatric species between 1974 and 2002, and quantified intra- and inter-guild, and annual variation in diet between and within foraging habits. In addition, we tested the reliability of stable isotope analysis (SIA) of seabird feathers collected over a 13-year period, in relation to those of their potential prey, as a tool to assess community structure when diets are diverse and there is high spatial heterogeneity in environmental baselines. Our results using conventional diet data identified a four-guild community structure, distinguishing species that mainly feed on crustaceans; large fish and squid; a mixture of crustaceans, small fish and squid; or carrion. In total, Antarctic krill Euphausia superba represented 32%, and 14 other species a further 46% of the combined diet of all 13 predators, underlining the reliance of this community on relatively few types of prey. Annual variation in trophic segregation depended on relative prey availability; however, our data did not provide evidence of changes in guild structure associated with a suggested decline in Antarctic krill abundance over the past 40 years. Reflecting the differences in δ(15) N of potential prey (crustaceans vs. squid vs. fish and carrion), analysis of δ(15) N in chick feathers identified a three-guild community structure that was constant over a 13-year period, but lacked the trophic cluster representing giant petrels which was identified using conventional diet data. Our study is the first in recent decades to examine dietary changes in seabird communities over time. Conventional dietary analysis provided better resolution of community structure than SIA. However, δ(15) N in chick feathers, which reflected trophic (level) specialization, was nevertheless an effective and less time-consuming means of monitoring temporal changes.


Asunto(s)
Biodiversidad , Aves/fisiología , Cadena Alimentaria , Animales , Regiones Antárticas , Organismos Acuáticos/fisiología , Islas del Atlántico , Dieta , Ecología
16.
Rapid Commun Mass Spectrom ; 29(7): 667-74, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26212285

RESUMEN

RATIONALE: 1In shelf and coastal ecosystems, planktonic and benthic trophic pathways differ in their carbon stable isotope ratios (δ(13)C values) and nitrogen stable isotope ratios (δ(15)N values) and they increase predictably with trophic level. Stable isotope data are therefore used as a tool to study food webs in shelf and coastal ecosystems, and to assess the diets and foraging behaviour of predators. However, spatial differences and temporal changes in prevailing environmental conditions and prey abundance may lead to considerable heterogeneity in stable isotope values measured in focal animal species. METHODS: Here we assess spatial and temporal variability of δ(13)C and δ(15)N values in tissue samples of fish, squid and crustacean species captured over three years during research cruises close to the Falkland Islands, Southwest Atlantic. RESULTS: Both in δ(15)N values and especially in δ(13)C values, intra-species differences were large and often exceeded inter-species differences. Spatial patterns were weak, albeit statistically significant. The distribution of δ(13)C values was related to latitude, while the δ(15)N values varied with longitude. The distance from the coast and depth of catch influenced both δ(13)C and δ(15)N values. However, the importance of temporal variability greatly exceeded that of spatial variability. In addition to a moderate overall seasonal effect, we found that species differed strongly in their specific seasonal changes. CONCLUSIONS: Seasonal differences in the relative position of species or species groups in the C-N isotope space suggest changes in the utilisation of planktonic vs. benthic trophic pathways, indicating flexible foraging strategies in response to variable environmental conditions. These seasonal differences should be taken into account when analysing higher trophic level feeding ecology with stable isotope analysis.


Asunto(s)
Organismos Acuáticos/química , Isótopos de Carbono/análisis , Cadena Alimentaria , Isótopos de Nitrógeno/análisis , Animales , Organismos Acuáticos/metabolismo , Organismos Acuáticos/fisiología , Crustáceos/fisiología , Decapodiformes/fisiología , Peces/fisiología , Espectrometría de Masas , Análisis Espacio-Temporal
17.
PLoS One ; 10(5): e0125007, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26018194

RESUMEN

Distant populations of animals may share their non-breeding grounds or migrate to distinct areas, and this may have important consequences for population differentiation and dynamics. Small burrow-nesting seabirds provide a suitable case study, as they are often restricted to safe breeding sites on islands, resulting in a patchy breeding distribution. For example, Thin-billed prions Pachyptila belcheri have two major breeding colonies more than 8,000 km apart, on the Falkland Islands in the south-western Atlantic and in the Kerguelen Archipelago in the Indian Ocean. We used geolocators and stable isotopes to compare at-sea movements and trophic levels of these two populations during their non-breeding season, and applied ecological niche models to compare environmental conditions in the habitat. Over three winters, birds breeding in the Atlantic showed a high consistency in their migration routes. Most individuals migrated more than 3000 km eastwards, while very few remained over the Patagonian Shelf. In contrast, all Indian Ocean birds migrated westwards, resulting in an overlapping nonbreeding area in the eastern Atlantic sector of the Southern Ocean. Geolocators and isotopic signature of feathers indicated that prions from the Falklands moulted at slightly higher latitudes than those from Kerguelen Islands. All birds fed on low trophic level prey, most probably crustaceans. The phenology differed notably between the two populations. Falkland birds returned to the Patagonian Shelf after 2-3 months, while Kerguelen birds remained in the nonbreeding area for seven months, before returning to nesting grounds highly synchronously and at high speed. Habitat models identified sea surface temperature and chlorophyll a concentration as important environmental parameters. In summary, we show that even though the two very distant populations migrate to roughly the same area to moult, they have distinct wintering strategies: They had significantly different realized niches and timing which may contribute to spatial niche partitioning.


Asunto(s)
Migración Animal , Aves/fisiología , Animales , Océano Atlántico , Aves/genética , Isótopos de Carbono/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Islas Malvinas , Plumas/química , Femenino , Océano Índico , Masculino , Muda , Comportamiento de Nidificación , Dinámica Poblacional , Reproducción/fisiología , Estaciones del Año
18.
Mar Biol ; 162(4): 733-741, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25797964

RESUMEN

Studies of avian migration increasingly use stable isotope analysis to provide vital trophic and spatial markers. However, when interpreting differences in stable isotope values of feathers, many studies are forced to make assumptions about the timing of moult. A fundamental question remains about the consistency of these values within and between feathers from the same individual. In this study, we examine variation in carbon and nitrogen isotopes by sub-sampling feathers collected from the wings of adults of two small congeneric petrel species, the broad-billed Pachyptila vittata and Antarctic prion P. desolata. Broad-billed prion feather vane material was enriched in 15N compared to feather rachis material, but there was no detectable difference in δ13C. Comparison of multiple samples taken from Antarctic prion feathers indicated subtle difference in isotopes; rachis material was enriched in 13C compared to vane material, and there were differences along the length of the feather, with samples from the middle and tip of the feather depleted in 15N compared to those from the base. While the greatest proportion of model variance was explained by differences between feathers and individuals, the magnitude of these within-feather differences was up to 0.5 ‰ in δ15N and 0.8 ‰ in δ13C. We discuss the potential drivers of these differences, linking isotopic variation to individual-level dietary differences, movement patterns and temporal dietary shifts. A novel result is that within-feather differences in δ13C may be attributed to differences in keratin structure within feathers, suggesting further work is required to understand the role of different amino acids. Our results highlight the importance of multiple sampling regimes that consider both within- and between-feather variation in studies using stable isotopes.

19.
J Anim Ecol ; 83(2): 470-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24215391

RESUMEN

Interspecific competitive interactions typically result in niche differentiation to alleviate competition through mechanisms including character displacement. However, competition is not the sole constraint on resource partitioning, and its effects are mediated by factors including the environmental context in which species coexist. Colonial seabirds provide an excellent opportunity to investigate the importance of competition in shaping realized niche widths because their life histories lead to variation in intra- and interspecific competition across the annual cycle. Dense breeding aggregations result in intense competition for prey in surrounding waters, whereas non-breeding dispersal to larger geographical areas produces lower densities of competitors. Bayesian hierarchical models of the isotopic niche, closely aligned to the trophic niche, reveal the degree of segregation between species and functional groups during both time periods. Surprisingly, species explained far more of the variance in the isotopic niche during the non-breeding than the breeding period. Our results underline the key role of non-breeding dynamics in alleviating competition and promoting distinctions between species through the facilitation of resource partitioning. Such situations may be common in a diverse range of communities sustained by ephemeral but abundant food items. This highlights how consideration of the hierarchical grouping of competitive interactions alongside consideration of abiotic constraints across the complete annual cycle allows a full understanding of the role of competition in driving patterns of character displacement.


Asunto(s)
Aves/fisiología , Conducta Competitiva , Conducta Alimentaria , Animales , Islas del Atlántico , Teorema de Bayes , Isótopos de Carbono/sangre , Isótopos de Carbono/metabolismo , Plumas/química , Femenino , Masculino , Espectrometría de Masas , Modelos Biológicos , Isótopos de Nitrógeno/sangre , Isótopos de Nitrógeno/metabolismo , Reproducción , Especificidad de la Especie
20.
Ibis (Lond 1859) ; 156(3): 676-681, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25866414

RESUMEN

The presence of one of the largest colonies of House Martins in Europe on the small island of Stora Karlsö, Sweden, led us to investigate the source of their food by analysis of stable isotopes of carbon and nitrogen. Carbon isotopic values of House Martin nestlings were the same as those of Common Guillemot Uria aalge nestlings fed on marine fish, but differed from local Collared Flycatcher Ficedula albicollis nestlings fed on woodland insects. We infer that these House Martins fed their chicks almost exclusively on insects that had used nutrients derived from seabirds, indicating a dependence on the presence of a large seabird colony. We suggest by extension that some populations of island passerines of high conservation importance may also be dependent on nutrient subsidies from seabird colonies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...