Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979314

RESUMEN

Corticostriatal projection neurons from prelimbic medial prefrontal cortex to the nucleus accumbens core critically regulate drug-seeking behaviors, yet the underlying encoding dynamics whereby these neurons contribute to drug seeking remain elusive. Here we use two-photon calcium imaging to visualize the activity of corticostriatal neurons in mice from the onset of heroin use to relapse. We find that the activity of these neurons is highly heterogeneous during heroin self-administration and seeking, with at least 8 distinct neuronal ensembles that display both excitatory and inhibitory encoding dynamics. These neuronal ensembles are particularly apparent during relapse, where excitatory responses are amplified compared to heroin self-administration. Moreover, we find that optogenetic inhibition of corticostriatal projection neurons attenuates heroin seeking regardless of the relapse trigger. Our results reveal the precise corticostriatal activity dynamics underlying drug-seeking behaviors and support a key role for this circuit in mediating relapse to drug seeking.

2.
J Neurosci ; 44(23)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38719446

RESUMEN

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.


Asunto(s)
Comportamiento de Búsqueda de Drogas , Extinción Psicológica , Plasticidad Neuronal , Corteza Prefrontal , Ratas Sprague-Dawley , Receptor trkB , Estimulación del Nervio Vago , Animales , Masculino , Ratas , Estimulación del Nervio Vago/métodos , Comportamiento de Búsqueda de Drogas/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inhibidores , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Extinción Psicológica/fisiología , Extinción Psicológica/efectos de los fármacos , Corteza Prefrontal/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Autoadministración , Cocaína/farmacología , Cocaína/administración & dosificación
3.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328140

RESUMEN

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in rats trained to self-administer cocaine. Pairing 10 days of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay (ELISA). Systemic blockade of Tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.

4.
Neuron ; 112(5): 772-785.e9, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38141605

RESUMEN

Lack of behavioral suppression typifies substance use disorders, yet the neural circuit underpinnings of drug-induced behavioral disinhibition remain unclear. Here, we employ deep-brain two-photon calcium imaging in heroin self-administering mice, longitudinally tracking adaptations within a paraventricular thalamus to nucleus accumbens behavioral inhibition circuit from the onset of heroin use to reinstatement. We find that select thalamo-accumbal neuronal ensembles become profoundly hypoactive across the development of heroin seeking and use. Electrophysiological experiments further reveal persistent adaptations at thalamo-accumbal parvalbumin interneuronal synapses, whereas functional rescue of these synapses prevents multiple triggers from initiating reinstatement of heroin seeking. Finally, we find an enrichment of µ-opioid receptors in output- and cell-type-specific paraventricular thalamic neurons, which provide a mechanism for heroin-induced synaptic plasticity and behavioral disinhibition. These findings reveal key circuit adaptations that underlie behavioral disinhibition in opioid dependence and further suggest that recovery of this system would reduce relapse susceptibility.


Asunto(s)
Heroína , Trastornos Relacionados con Opioides , Ratas , Ratones , Animales , Heroína/farmacología , Ratas Sprague-Dawley , Autoadministración/métodos , Neuronas , Núcleo Accumbens/fisiología
5.
J Womens Health (Larchmt) ; 32(8): 865-868, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585508

RESUMEN

There is a critical need to develop a capable and well-trained workforce dedicated to the systematic study of sex differences and examination of sex as a biological variable. Through the support of the Office of Research on Women's Health and partner National Institute of Health centers, the Specialized Centers of Research Excellence (SCORE) on Sex Differences Career Enhancement Cores (CECs) were established to help address this need. We describe the integration of the Medical University of South Carolina SCORE CEC with other National Institutes of Health (NIH)-funded and institutional training programs to promote training synergies, share resources, and enhance mentorship opportunities. Benefits of developing an intrainstitutional training platform have included facilitating cross-disciplinary interactions, encouragement of peer mentorship, and reduced burden on training program leadership.


Asunto(s)
Investigación Biomédica , Tutoría , Femenino , Humanos , Masculino , Mentores , Caracteres Sexuales , Investigación Biomédica/educación , Salud de la Mujer
7.
Cells ; 12(14)2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37508477

RESUMEN

Clinical and preclinical studies indicate that adaptations in corticostriatal neurotransmission significantly contribute to heroin relapse vulnerability. In animal models, heroin self-administration and extinction produce cellular adaptations in both neurons and astrocytes within the nucleus accumbens (NA) core that are required for cue-induced heroin seeking. Specifically, decreased glutamate clearance and reduced association of perisynaptic astrocytic processes with NAcore synapses allow glutamate release from prelimbic (PrL) cortical terminals to engage synaptic and structural plasticity in NAcore medium spiny neurons. Normalizing astrocyte glutamate homeostasis with drugs like the antioxidant N-acetylcysteine (NAC) prevents cue-induced heroin seeking. Surprisingly, little is known about heroin-induced alterations in astrocytes or pyramidal neurons projecting to the NAcore in the PrL cortex (PrL-NAcore). Here, we observe functional adaptations in the PrL cortical astrocyte following heroin self-administration (SA) and extinction as measured by the electrophysiologically evoked plasmalemmal glutamate transporter 1 (GLT-1)-dependent current. We likewise observed the increased complexity of the glial fibrillary acidic protein (GFAP) cytoskeletal arbor and increased association of the astrocytic plasma membrane with synaptic markers following heroin SA and extinction training in the PrL cortex. Repeated treatment with NAC during extinction reversed both the enhanced astrocytic complexity and synaptic association. In PrL-NAcore neurons, heroin SA and extinction decreased the apical tuft dendritic spine density and enlarged dendritic spine head diameter in male Sprague-Dawley rats. Repeated NAC treatment during extinction prevented decreases in spine density but not dendritic spine head expansion. Moreover, heroin SA and extinction increased the co-registry of the GluA1 subunit of AMPA receptors in both the dendrite shaft and spine heads of PrL-NAcore neurons. Interestingly, the accumulation of GluA1 immunoreactivity in spine heads was further potentiated by NAC treatment during extinction. Finally, we show that the NAC treatment and elimination of thrombospondin 2 (TSP-2) block cue-induced heroin relapse. Taken together, our data reveal circuit-level adaptations in cortical dendritic spine morphology potentially linked to heroin-induced alterations in astrocyte complexity and association at the synapses. Additionally, these data demonstrate that NAC reverses PrL cortical heroin SA-and-extinction-induced adaptations in both astrocytes and corticostriatal neurons.


Asunto(s)
Acetilcisteína , Heroína , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Heroína/farmacología , Acetilcisteína/farmacología , Astrocitos , Sinapsis , Glutamatos , Recurrencia
8.
J Neurosci ; 43(22): 4019-4032, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37094933

RESUMEN

Dysregulation of the input from the prefrontal cortex (PFC) to the nucleus accumbens (NAc) contributes to cue-induced opioid seeking but the heterogeneity in, and regulation of, prelimbic (PL)-PFC to NAc (PL->NAc) neurons that are altered has not been comprehensively explored. Recently, baseline and opiate withdrawal-induced differences in intrinsic excitability of Drd1+ (D1+) versus Drd2+ (D2+) PFC neurons have been demonstrated. Thus, here we investigated physiological adaptations of PL->NAc D1+ versus D2+ neurons after heroin abstinence and cue-induced relapse. Drd1-Cre+ and Drd2-Cre+ transgenic male Long-Evans rats with virally labeled PL->NAc neurons were trained to self-administer heroin followed by 1 week of forced abstinence. Heroin abstinence significantly increased intrinsic excitability in D1+ and D2+ PL->NAc neurons and increased postsynaptic strength selectively in D1+ neurons. These changes were normalized by cue-induced relapse to heroin seeking. Based on protein kinase A (PKA)-dependent changes in the phosphorylation of plasticity-related proteins in the PL cortex during abstinence and cue-induced relapse to cocaine seeking, we assessed whether the electrophysiological changes in D1+ and D2+ PL->NAc neurons during heroin abstinence were regulated by PKA. In heroin-abstinent PL slices, application of the PKA antagonist (R)-adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium (RP-cAMPs) reversed intrinsic excitability in both D1+ and D2+ neurons and postsynaptic strength in only D1+ neurons. Additionally, in vivo bilateral intra-PL infusion of RP-cAMPs after abstinence from heroin inhibited cue-induced relapse to heroin seeking. These data reveal that PKA activity in D1+ and D2+ PL->NAc neurons is not only required for abstinence-induced physiological adaptations but is also required for cue-induced relapse to heroin seeking.SIGNIFICANCE STATEMENT Neuronal plasticity in the medial prefrontal cortex is thought to underlie relapse to drug seeking, yet the subpopulation of neurons that express this plasticity to functionally guide relapse is unclear. Here we show cell type-specific adaptations in Drd1-expressing versus Drd2-expressing prelimbic pyramidal neurons with efferent projections to nucleus accumbens. These adaptations are bidirectionally regulated during abstinence versus relapse and involve protein kinase A (PKA) activation. Furthermore, we show that disruption of the abstinence-associated adaptations via site-specific PKA inhibition abolishes relapse. These data reveal the promising therapeutic potential of PKA inhibition for preventing relapse to heroin seeking and suggest that cell type-specific pharmacologies that target subpopulations of prefrontal neurons would be ideal for future therapeutic developments.


Asunto(s)
Cocaína , Núcleo Accumbens , Ratas , Animales , Masculino , Núcleo Accumbens/fisiología , Heroína , Ratas Sprague-Dawley , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Señales (Psicología) , Ratas Long-Evans , Neuronas/fisiología , Plasticidad Neuronal , Recurrencia , Receptores de Dopamina D2/metabolismo
9.
Nat Commun ; 13(1): 6865, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369508

RESUMEN

Suppression of dangerous or inappropriate reward-motivated behaviors is critical for survival, whereas therapeutic or recreational opioid use can unleash detrimental behavioral actions and addiction. Nevertheless, the neuronal systems that suppress maladaptive motivated behaviors remain unclear, and whether opioids disengage those systems is unknown. In a mouse model using two-photon calcium imaging in vivo, we identify paraventricular thalamostriatal neuronal ensembles that are inhibited upon sucrose self-administration and seeking, yet these neurons are tonically active when behavior is suppressed by a fear-provoking predator odor, a pharmacological stressor, or inhibitory learning. Electrophysiological, optogenetic, and chemogenetic experiments reveal that thalamostriatal neurons innervate accumbal parvalbumin interneurons through synapses enriched with calcium permeable AMPA receptors, and activity within this circuit is necessary and sufficient for the suppression of sucrose seeking regardless of the behavioral suppressor administered. Furthermore, systemic or intra-accumbal opioid injections rapidly dysregulate thalamostriatal ensemble dynamics, weaken thalamostriatal synaptic innervation of downstream neurons, and unleash reward-seeking behaviors in a manner that is reversed by genetic deletion of thalamic µ-opioid receptors. Overall, our findings reveal a thalamostriatal to parvalbumin interneuron circuit that is both required for the suppression of reward seeking and rapidly disengaged by opioids.


Asunto(s)
Analgésicos Opioides , Parvalbúminas , Ratones , Animales , Analgésicos Opioides/farmacología , Calcio , Recompensa , Sacarosa
10.
Addict Neurosci ; 22022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37206683

RESUMEN

Cocaine self-administration disturbs intracellular signaling in multiple reward circuitry neurons that underlie relapse to drug seeking. Cocaine-induced deficits in prelimbic (PL) prefrontal cortex change during abstinence, resulting in different neuroadaptations during early withdrawal from cocaine self-administration than after one or more weeks of abstinence. Infusion of brain-derived neurotrophic factor (BDNF) into the PL cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine seeking for an extended period. BDNF affects local (PL) and distal subcortical target areas that mediate cocaine-induced neuroadaptations that lead to cocaine seeking. Blocking synaptic activity selectively in the PL projection to the nucleus accumbens during early withdrawal prevents BDNF from decreasing subsequent relapse. In contrast, blocking synaptic activity selectively in the PL projection to the paraventricular thalamic nucleus by itself decreases subsequent relapse and prior intra-PL BDNF infusion prevents the decrease. Infusion of BDNF into other brain structures at different timepoints after cocaine self administration differentially alters cocaine seeking. Thus, the effects of BDNF on drug seeking are different depending on the brain region, the timepoint of intervention, and the specific pathway that is affected.

11.
Front Behav Neurosci ; 14: 590528, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33177999

RESUMEN

The paraventricular thalamic nucleus (PVT) is highly interconnected with brain areas that control reward-seeking behavior. Despite this known connectivity, broad manipulations of PVT often lead to mixed, and even opposing, behavioral effects, clouding our understanding of how PVT precisely contributes to reward processing. Although the function of PVT in influencing reward-seeking is poorly understood, recent studies show that forebrain and hypothalamic inputs to, and nucleus accumbens (NAc) and amygdalar outputs from, PVT are strongly implicated in PVT responses to conditioned and appetitive or aversive stimuli that determine whether an animal will approach or avoid specific rewards. These studies, which have used an array of chemogenetic, optogenetic, and calcium imaging technologies, have shown that activity in PVT input and output circuits is highly heterogeneous, with mixed activity patterns that contribute to behavior in highly distinct manners. Thus, it is important to perform experiments in precisely defined cell types to elucidate how the PVT network contributes to reward-seeking behaviors. In this review, we describe the complex heterogeneity within PVT circuitry that appears to influence the decision to seek or avoid a reward and point out gaps in our understanding that should be investigated in future studies.

12.
Brain Struct Funct ; 224(2): 741-758, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30498893

RESUMEN

Cocaine self-administration (SA) in rats dysregulates glutamatergic signaling in the prelimbic (PrL) cortex and glutamate release in the nucleus accumbens (NA) core, promoting cocaine seeking. PrL adaptations that affect relapse to drug seeking emerge during the first week of abstinence, switching from an early (2 h) hypoglutamatergic state to a later (7 days) hyperglutamatergic state. Different interventions that normalize glutamatergic signaling in PrL cortex at each timepoint are necessary to suppress relapse. We hypothesized that plasticity-related proteins that regulate glutamatergic neurotransmission as well as dendritic spine morphology would be biphasically regulated during these two phases of abstinence in PrL cortical neurons projecting to the NA core (PrL-NA core). A combinatorial viral approach was used to selectively label PrL-NA core neurons with an mCherry fluorescent reporter. Male rats underwent 2 weeks of cocaine SA or received yoked-saline infusions and were perfused either 2 h or 7 days after the final SA session. Confocal microscopy and 3D reconstruction analyses were performed for Fos and pCREB immunoreactivity (IR) in the nucleus of layer V PrL-NA core neurons and GluA1-IR and GluA2-IR in apical dendritic spines of the same neurons. Here, we show that cocaine SA decreased PrL-NA core spine head diameter, nuclear Fos-IR and pCREB-IR, and GluA1-IR and GluA2-IR in putative mushroom-type spines 2 h after the end of cocaine SA, whereas the opposite occurred following 1 week of abstinence. Our findings reveal biphasic, abstinence duration-dependent alterations in structural plasticity and relapse-related proteins in the PrL-NA core pathway after cocaine SA.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Cocaína/administración & dosificación , Espinas Dendríticas/efectos de los fármacos , Inhibidores de Captación de Dopamina/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Animales , Forma de la Célula/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración
13.
Addict Biol ; 23(6): 1233-1241, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30421552

RESUMEN

Recreational drug use peaks during adolescence. Our research with adolescent vs adult male rats, however, shows that rats taking cocaine as adolescents have lower levels of cue-induced reinstatement of drug-seeking than adults, despite similar levels of intravenous (i.v.) cocaine self-administration. Lower rates of reinstatement in younger rats could be explained by higher levels of brain plasticity. Two neuroplasticity-related genes, activity-regulated cytoskeletal-associated gene (Arc) and brain-derived neurotrophic factor (Bdnf), influence cocaine self-administration and cue-induced reinstatement. We tested whether reinstatement of cocaine seeking correlates with expression of these genes in reinforcement-related brain regions. Adolescent and adult male rats (postnatal day 35 or 83-95 at start) were allowed to acquire lever-pressing maintained by i.v. infusions of cocaine in daily 2-h sessions over 13 days. At one of three experimental time points, rats were sacrificed and tissue collected to analyze Arc and Bdnf mRNA by in situ hybridization in the entire medial prefrontal cortex and entire nucleus accumbens, as well as relevant subregions: prelimbic cortex, infralimbic cortex, and nucleus accumbens core and shell. Despite taking similar amounts of cocaine, adolescents reinstated less than adults. Gene expression was most notable in the prelimbic cortex, was generally higher in adolescent-onset groups, and was higher with longer abstinence. These data partially support the hypothesis that higher levels of Arc and/or Bdnf gene expression in reinforcement-related brain regions of younger animals contribute to lower rates of extinction responding and/or reinstatement. Future studies should include mechanistic analysis of Arc, Bdnf, and their signaling pathways in age-dependent effects of cocaine.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cocaína/farmacología , Proteínas del Citoesqueleto/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Análisis de Varianza , Animales , Aprendizaje por Asociación/efectos de los fármacos , Biomarcadores/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Señales (Psicología) , Proteínas del Citoesqueleto/genética , Extinción Psicológica/efectos de los fármacos , Expresión Génica/fisiología , Masculino , Proteínas del Tejido Nervioso/genética , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Ratas Wistar , Autoadministración
14.
J Neurosci ; 38(42): 8956-8966, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30185459

RESUMEN

A single BDNF microinfusion into prelimbic (PrL) cortex immediately after the last cocaine self-administration session decreases relapse to cocaine-seeking. The BDNF effect is blocked by NMDAR antagonists. To determine whether synaptic activity in putative excitatory projection neurons in PrL cortex is sufficient for BDNF's effect on relapse, the PrL cortex of male rats was infused with an inhibitory Designer Receptor Exclusively Activated by Designer Drugs (DREADD) viral vector driven by an αCaMKII promoter. Immediately after the last cocaine self-administration session, rats were injected with clozapine-N-oxide 30 min before an intra-PrL BDNF microinfusion. DREADD-mediated inhibition of the PrL cortex blocked the BDNF-induced decrease in cocaine-seeking after abstinence and cue-induced reinstatement after extinction. Unexpectedly, DREADD inhibition of PrL neurons in PBS-infused rats also reduced cocaine-seeking, suggesting that divergent PrL pathways affect relapse. Next, using a cre-dependent retroviral approach, we tested the ability of DREADD inhibition of PrL projections to the NAc core or the paraventricular thalamic nucleus (PVT) to alter cocaine-seeking in BDNF- and PBS-infused rats. Selective inhibition of the PrL-NAc pathway at the end of cocaine self-administration blocked the BDNF-induced decrease in cocaine-seeking but had no effect in PBS-infused rats. In contrast, selective inhibition of the PrL-PVT pathway in PBS-infused rats decreased cocaine-seeking, and this effect was prevented in BDNF-infused rats. Thus, activity in the PrL-NAc pathway is responsible for the therapeutic effect of BDNF on cocaine-seeking whereas inhibition of activity in the PrL-pPVT pathway elicits a similar therapeutic effect in the absence of BDNF.SIGNIFICANCE STATEMENT The major issue in cocaine addiction is the high rate of relapse. However, the neuronal pathways governing relapse remain unclear. Using a pathway-specific chemogenetic approach, we found that BDNF differentially regulates two key prelimbic pathways to guide long-term relapse. Infusion of BDNF in the prelimbic cortex during early withdrawal from cocaine self-administration decreases relapse that is prevented when neurons projecting from the prelimbic cortex to the nucleus accumbens core are inhibited. In contrast, BDNF restores relapse when neurons projecting from the prelimbic cortex to the posterior paraventricular thalamic nucleus are inhibited. This study demonstrates that two divergent cortical outputs mediate relapse that is regulated in opposite directions by infusing BDNF in the prelimbic cortex during early withdrawal from cocaine.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Clozapina/administración & dosificación , Clozapina/análogos & derivados , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Masculino , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley
15.
Neuropharmacology ; 140: 35-42, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30056122

RESUMEN

The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) has been implicated in a number of neuropsychiatric disorders, including alcohol use disorder. Studies have shown that BDNF activity in cortical regions, such as the medial prefrontal cortex (mPFC) mediates various ethanol-related behaviors. We previously reported a significant down-regulation in Bdnf mRNA in mPFC following chronic ethanol exposure compared to control mice. The present study was conducted to extend these findings by examining whether chronic ethanol treatment reduces BDNF protein expression in mPFC and whether reversing this deficit via direct injection of BDNF or viral-mediated overexpression of BDNF in mPFC alters voluntary ethanol consumption in dependent and nondependent mice. Repeated cycles of chronic intermittent ethanol (CIE) exposure was employed to model ethanol dependence, which produces robust escalation of ethanol intake. Results indicated that CIE treatment significantly increased ethanol intake and this was accompanied by a significant decrease in BDNF protein in mPFC that lasted at least 72 h after CIE exposure. In a separate study, once dependence-related increased drinking was established, bilateral infusion of BDNF (0, 0.25, 0.50 µg) into mPFC significantly decreased ethanol intake in a dose-related manner in dependent mice but did not affect moderate drinking in nondependent mice. In a third study, viral-mediated overexpression of BDNF in mPFC prevented escalation of drinking in dependent mice but did not alter intake in nondependent mice. Collectively, these results provide evidence that adaptations in cortical (mPFC) BDNF activity resulting from chronic ethanol exposure play a role in mediating excessive ethanol drinking associated with dependence.


Asunto(s)
Consumo de Bebidas Alcohólicas/prevención & control , Alcoholismo/prevención & control , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Prefrontal/metabolismo , Consumo de Bebidas Alcohólicas/fisiopatología , Alcoholismo/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Etanol/efectos adversos , Vectores Genéticos/administración & dosificación , Masculino , Ratones , Microinyecciones
16.
Addict Biol ; 23(1): 219-229, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28349660

RESUMEN

Cocaine self-administration in rats results in dysfunctional neuroadaptations in the prelimbic (PrL) cortex during early abstinence. Central to these adaptations is decreased phospho-extracellular signal-regulated kinase (p-ERK), which plays a key role in cocaine seeking. Normalizing ERK phosphorylation in the PrL cortex immediately after cocaine self-administration decreases subsequent cocaine seeking. The disturbance in ERK phosphorylation is accompanied by decreased phosphorylation of striatal-enriched protein tyrosine phosphatase (STEP), indicating increased STEP activity. STEP is a well-recognized ERK phosphatase but whether STEP activation during early abstinence mediates the decrease in p-ERK and is involved in relapse is unknown. Here, we show that a single intra-PrL cortical microinfusion of the selective STEP inhibitor, TC-2153, immediately after self-administration suppressed post-abstinence context-induced relapse under extinction conditions and cue-induced reinstatement, but not cocaine prime-induced drug seeking or sucrose seeking. Moreover, an intra-PrL cortical TC-2153 microinfusion immediately after self-administration prevented the cocaine-induced decrease in p-ERK within the PrL cortex during early abstinence. Interestingly, a systemic TC-2153 injection at the same timepoint failed to suppress post-abstinence context-induced relapse or cue-induced reinstatement, but did suppress cocaine prime-induced reinstatement. These data indicate that the STEP-induced ERK dephosphorylation in the PrL cortex during early abstinence is a critical neuroadaptation that promotes relapse to cocaine seeking and that systemic versus intra-PrL cortical inhibition of STEP during early abstinence differentially suppresses cocaine seeking.


Asunto(s)
Benzotiepinas/farmacología , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Animales , Quinasas MAP Reguladas por Señal Extracelular , Masculino , Fosfoproteínas , Corteza Prefrontal , Ratas , Ratas Sprague-Dawley , Autoadministración
17.
Neuropsychopharmacology ; 42(10): 1972-1980, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28585567

RESUMEN

Models of relapse have demonstrated that neuroadaptations in reward circuits following cocaine self-administration (SA) underlie reinstatement of drug-seeking. Dysregulation of the pathway from the prelimbic (PrL) cortex to the nucleus accumbens is implicated in reinstatement. A single BDNF infusion into the PrL cortex following a final cocaine SA session results in attenuation of reinstatement of cocaine-seeking. Inhibiting BDNF's receptor, TrkB, ERK/MAP kinase activation, or NMDA receptors blocks this attenuating effect, indicating that the interaction between glutamate-mediated synaptic activity and TrkB signaling is imperative to BDNF's suppressive effect on drug-seeking. Src family kinases (SFKs) are involved in both NMDA-mediated activation of TrkB- and TrkB-mediated tyrosine phosphorylation of NMDA receptors. We hypothesized that infusion of the SFK inhibitor, PP2, into the PrL cortex prior to a BDNF infusion, immediately after the end of the last cocaine SA session, would block BDNF's ability to suppress reinstatement of cocaine-seeking in rats with a cocaine SA history. PP2, but not the negative control, PP3, blocked BDNF's suppressive effect on context-induced relapse after 1 week of abstinence and cue-induced reinstatement after extinction. As previously reported, infusion of BDNF into the PrL cortex blocked cocaine SA-induced dephosphorylation of ERK, GluN2A, and GluN2B-containing receptors. Inhibition of SFKs using PP2 blocked BDNF-mediated phosphorylation of GluN2A, GluN2B, and ERK. These data indicate that SFK activity is necessary for BDNF-mediated suppression of cocaine-seeking and reversal of cocaine-induced dephosphorylation of key phosphoproteins in the prefrontal cortex related to synaptic plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Fármacos del Sistema Nervioso Central/farmacología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Familia-src Quinasas/metabolismo , Animales , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína/enzimología , Comportamiento de Búsqueda de Drogas/fisiología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Corteza Prefrontal/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Familia-src Quinasas/antagonistas & inhibidores
18.
Alcohol Clin Exp Res ; 41(5): 955-964, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28212464

RESUMEN

BACKGROUND: Excessive ethanol (EtOH) consumption remains an important health concern and effective treatments are lacking. The central oxytocin system has emerged as a potentially important therapeutic target for alcohol and drug addiction. These studies tested the hypothesis that oxytocin reduces EtOH consumption. METHODS: Male C57BL/6J mice were given access to EtOH (20% v/v) using a model of binge-like drinking ("drinking in the dark") that also included the use of lickometer circuits to evaluate the temporal pattern of intake as well as 2-bottle choice drinking in the home cage. In addition, EtOH (12% v/v) and sucrose (5% w/v) self-administration on fixed- and progressive-ratio schedules were also evaluated. A wide range of systemically administered oxytocin doses were tested (0 to 10 mg/kg) in these models. RESULTS: Oxytocin (0, 0.3, 1, 3, or 10 mg/kg) dose dependently reduced EtOH consumption (maximal 45% reduction) in the binge drinking model, with lower effective doses having minimal effects on general locomotor activity. Oxytocin's effect was blocked by pretreatment with an oxytocin receptor antagonist, and the pattern of contacts (licks) at the EtOH bottle suggested a reduction in motivation to drink EtOH. Oxytocin decreased 2-bottle choice drinking without altering general fluid intake. Oxytocin also reduced operant responding for EtOH and sucrose in a dose-related manner. However, oxytocin decreased responding and motivation (breakpoint values) for EtOH at doses that did not alter responding for sucrose. CONCLUSIONS: These results indicate that oxytocin reduces EtOH consumption in different models of self-administration. The effects are not likely due to a general sedative effect of the neuropeptide. Further, oxytocin reduces motivation for EtOH at doses that do not alter responding for a natural reward (sucrose). While some evidence supports a role for oxytocin receptors in mediating these effects, additional studies are needed to further elucidate underlying mechanisms. Nevertheless, these results support the therapeutic potential of oxytocin as a treatment for alcohol use disorder.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/prevención & control , Etanol/administración & dosificación , Oxitocina/uso terapéutico , Animales , Consumo Excesivo de Bebidas Alcohólicas/psicología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Relación Dosis-Respuesta a Droga , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitocina/farmacología , Autoadministración
19.
Eur Neuropsychopharmacol ; 26(12): 1989-1999, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27765467

RESUMEN

Cocaine self-administration induces dysfunctional neuroadaptations in the prefrontal cortex that underlie relapse to cocaine-seeking. Cocaine self-administration disturbs glutamatergic transmission in the nucleus accumbens that is prevented by infusion of brain-derived neurotrophic factor (BDNF) into the prelimbic area of the prefrontal cortex. Intra-prelimbic infusion of BDNF decreases cocaine-seeking in a TrkB-ERK MAP kinase-dependent manner. Neuronal activity triggers an interaction between TrkB receptors and NMDA receptors, leading to ERK activation. In the present study, infusion of the GluN2A-containing NMDA receptor antagonist, TCN-201, or the GluN2B-containing NMDA receptor antagonist, Ro-25-6981, into the prelimbic cortex of rats blocked the suppressive effect of BDNF on cocaine-seeking. During early withdrawal from cocaine self-administration, tyrosine phosphorylation of ERK, GluN2A, and GluN2B in the prelimbic cortex was reduced and this reduction of phospho-proteins was prevented by intra-prelimbic BDNF infusion. TCN-201 infusion into the prelimbic cortex inhibited the BDNF-mediated increase in pERK and pGluN2A whereas Ro-25-6981 infusion into the prelimbic cortex blocked BDNF-induced elevation of pERK and pGluN2B, indicating that both GluN2A- and GluN2B-containing NMDA receptors underlie BDNF-induced ERK activation. These data demonstrate that BDNF-mediated activation of GluN2A- and GluN2B-containing NMDA receptors underlies ERK activation in the prelimbic cortex during early withdrawal, preventing subsequent relapse to cocaine-seeking.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/psicología , Ácido Glutámico , Corteza Prefrontal/fisiopatología , Transmisión Sináptica , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Microinyecciones , Fenoles/farmacología , Piperidinas/farmacología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Autoadministración , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/psicología , Sulfonamidas/farmacología
20.
Psychopharmacology (Berl) ; 233(6): 1015-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26700240

RESUMEN

RATIONALE: The endogenous oxytocin system has emerged as an inhibitor of drug-seeking and stress in preclinical models. OBJECTIVES: The goal of this study was to examine whether systemic oxytocin administration attenuated methamphetamine (METH)-seeking in rats pre-exposed to a predator odor threat. METHODS: In Experiment 1, rats were exposed for 5 days to the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), or saline before METH self-administration began. After extinction training, rats were injected with 1 mg/kg, ip oxytocin (OXT) or saline 30 min before a cue-induced reinstatement test followed by re-extinction and a TMT-induced reinstatement test. In Experiment 2, TMT pre-exposure was followed by 10 days of 1 mg/kg OXT or saline injections before METH self-administration, extinction, and a TMT-induced reinstatement test. RESULTS: In Experiment 1, TMT pre-exposed rats that were injected with saline 30 min before reinstatement exhibited greater drug-seeking induced by conditioned cues or TMT than that exhibited by saline pre-exposed rats. A single injection of OXT 30 min before reinstatement suppressed METH-seeking in both saline- and TMT pre-exposed rats. In Experiment 2, TMT pre-exposed rats that received saline injections for 10 days prior to METH self-administration exhibited enhanced drug-seeking induced by TMT during stress-induced reinstatement. OXT injections for 10 days prior to METH self-administration blocked only the stress-induced exacerbation of drug-seeking in TMT pre-exposed rats. CONCLUSIONS: These results support further research on the development of oxytocin as a novel therapeutic drug that has enduring effects on drug-seeking exacerbated by stress.


Asunto(s)
Estimulantes del Sistema Nervioso Central/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Metanfetamina/administración & dosificación , Odorantes , Oxitocina/farmacología , Animales , Señales (Psicología) , Masculino , Ratas , Ratas Sprague-Dawley , Autoadministración , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA