Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762178

RESUMEN

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse-free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage-independent growth, invasion, and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin-positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Masculino , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Adhesiones Focales/metabolismo , Adhesiones Focales/genética , Invasividad Neoplásica , Paxillin/metabolismo , Paxillin/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Tensinas/metabolismo , Tensinas/genética
2.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38260312

RESUMEN

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete, but abnormally activated in a wide variety of tumors. The CTA, Testis specific serine kinase 6 (TSSK6), is essential for male fertility in mice. Functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage independent growth, invasion and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.

3.
J Biol Chem ; 299(11): 105348, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838177

RESUMEN

Tumors anomalously induce the expression of meiotic genes, which are otherwise restricted only to developing gametes. If and how these aberrantly expressed meiotic proteins influence DNA metabolism is not clear, but could have important implications for how tumors acquire and mitigate genomic instability. HORMAD1 is a highly conserved meiotic protein that is frequently expressed in lung adenocarincoma where its expression correlates with reduced patient survival and increased mutation burden. Here, we find that HORMAD1 associates with the replisome and is critical for protecting stalled DNA replication forks. Loss of HORMAD1 leads to nascent DNA strand degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. We find that these phenotypes are due to limited RAD51 loading onto stalled replication forks in the absence of HORMAD1. Ultimately, loss of HORMAD1 leads to increased DNA breaks and chromosomal defects, which is exacerbated dramatically by induction of replication stress. Tumor cells proliferate despite encountering chronic replication stress, placing them on the precipice of catastrophic genomic damage. Our data support the hypothesis that the aberrant expression of HORMAD1 is engaged to attenuate the accumulation of excessive DNA damage due to chronic replication stress, which may otherwise lead to accumulation of toxic levels of genomic instability.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Neoplasias/genética
4.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778501

RESUMEN

Tumors frequently activate the expression of genes that are only otherwise required for meiosis. HORMAD1, which is essential for meiotic recombination in multiple species, is expressed in over 50% of human lung adenocarcinoma cells (LUAD). We previously found that HORMAD1 promotes DNA double strand break (DSB) repair in LUAD. Here, we report that HORMAD1 takes on an additional role in protecting genomic integrity. Specifically, we find HORMAD1 is critical for protecting stalled DNA replication forks in LUAD. Loss of HORMAD1 leads to nascent DNA degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. Moreover, following exogenous induction of DNA replication stress, HORMAD1 deleted cells accumulate single stranded DNA (ssDNA). We find that these phenotypes are the result of a lack of RAD51 and BRCA2 loading onto stalled replication forks. Ultimately, loss of HORMAD1 leads to increased DSBs and chromosomal aberrations in response to replication stress. Collectively, our data support a model where HORMAD1 expression is selected to mitigate DNA replication stress, which would otherwise induce deleterious genomic instability.

5.
Front Cell Dev Biol ; 8: 576396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178692

RESUMEN

Adrenergic signaling is a well-known input into pancreatic islet function. Specifically, the insulin-secreting islet ß cell expresses the Gi/o-linked α2-adrenergic receptor, which upon activation suppresses insulin secretion. The use of the adrenergic agonist epinephrine at micromolar doses may have supraphysiological effects. We found that pretreating ß cells with micromolar concentrations of epinephrine differentially inhibited activation of receptor tyrosine kinases. We chose TrkB as an example because of its relative sensitivity to the effects of epinephrine and due to its potential regulatory role in the ß cell. Our characterization of brain-derived neurotrophic factor (BDNF)-TrkB signaling in MIN6 ß cells showed that TrkB is activated by BDNF as expected, leading to canonical TrkB autophosphorylation and subsequent downstream signaling, as well as chronic effects on ß cell growth. Micromolar, but not nanomolar, concentrations of epinephrine blocked BDNF-induced TrkB autophosphorylation and downstream mitogen-activated protein kinase pathway activation, suggesting an inhibitory phenomenon at the receptor level. We determined epinephrine-mediated inhibition of TrkB activation to be Gi/o-dependent using pertussis toxin, arguing against an off-target effect of high-dose epinephrine. Published data suggested that inhibition of potassium channels or phosphoinositide-3-kinase signaling may abrogate the negative effects of epinephrine; however, these did not rescue TrkB signaling in our experiments. Taken together, these results show that (1) TrkB kinase signaling occurs in ß cells and (2) use of epinephrine in studies of insulin secretion requires careful consideration of concentration-dependent effects. BDNF-TrkB signaling in ß cells may underlie pro-survival or growth signaling and warrants further study.

6.
Elife ; 92020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32990599

RESUMEN

Cancer testis antigens (CTAs) are proteins whose expression is normally restricted to the testis but anomalously activated in human cancer. In sperm, a number of CTAs support energy generation, however, whether they contribute to tumor metabolism is not understood. We describe human COX6B2, a component of cytochrome c oxidase (complex IV). COX6B2 is expressed in human lung adenocarcinoma (LUAD) and expression correlates with reduced survival time. COX6B2, but not its somatic isoform COX6B1, enhances activity of complex IV, increasing oxidative phosphorylation (OXPHOS) and NAD+ generation. Consequently, COX6B2-expressing cancer cells display a proliferative advantage, particularly in low oxygen. Conversely, depletion of COX6B2 attenuates OXPHOS and collapses mitochondrial membrane potential leading to cell death or senescence. COX6B2 is both necessary and sufficient for growth of human tumor xenografts in mice. Our findings reveal a previously unappreciated, tumor-specific metabolic pathway hijacked from one of the most ATP-intensive processes in the animal kingdom: sperm motility.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Complejo IV de Transporte de Electrones/genética , Neoplasias Pulmonares/genética , Fosforilación Oxidativa , Animales , Complejo IV de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Desnudos
7.
Elife ; 92020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515734

RESUMEN

Cancer/testis (CT) antigens are proteins whose expression is normally restricted to germ cells yet aberrantly activated in tumors, where their functions remain relatively cryptic. Here we report that ZNF165, a CT antigen frequently expressed in triple-negative breast cancer (TNBC), associates with SMAD3 to modulate transcription of transforming growth factor ß (TGFß)-dependent genes and thereby promote growth and survival of human TNBC cells. In addition, we identify the KRAB zinc finger protein, ZNF446, and its associated tripartite motif protein, TRIM27, as obligate components of the ZNF165-SMAD3 complex that also support tumor cell viability. Importantly, we find that TRIM27 alone is necessary for ZNF165 transcriptional activity and is required for TNBC tumor growth in vivo using an orthotopic xenograft model in immunocompromised mice. Our findings indicate that aberrant expression of a testis-specific transcription factor is sufficient to co-opt somatic transcriptional machinery to drive a pro-tumorigenic gene expression program in TNBC.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína smad3/metabolismo , Testículo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Transducción de Señal , Proteína smad3/genética , Neoplasias de la Mama Triple Negativas/genética
8.
Mol Cell Biol ; 39(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31036566

RESUMEN

Ewing sarcoma is characterized by a pathognomonic chromosomal translocation that generates the EWSR1-FLI1 chimeric transcription factor. The transcriptional targets of EWSR1-FLI1 that are essential for tumorigenicity are incompletely defined. Here, we found that EWSR1-FLI1 modulates the expression of cancer/testis (CT) antigen genes, whose expression is biased to the testes but is also activated in cancer. Among these CT antigens, fetal and adult testis expressed 1 (FATE1) is most robustly induced. EWSR1-FLI1 associates with the GGAA repeats in the proximal promoter of FATE1, which exhibits accessible chromatin exclusively in mesenchymal progenitor cells (MPCs) and Ewing sarcoma cells. Expression of EWSR1-FLI1 in non-Ewing sarcoma cells and in MPCs enhances FATE1 mRNA and protein expression. Conversely, depletion of EWSR1-FLI1 in Ewing sarcoma cells leads to a loss of FATE1 expression. Importantly, we found that FATE1 is required for survival and anchorage-independent growth in Ewing sarcoma cells via attenuating the accumulation of BNIP3L, a BH3-only protein that is toxic when stabilized. This action appears to be mediated by the E3 ligase RNF183. We propose that engaging FATE1 function can permit the bypass of cell death mechanisms that would otherwise inhibit tumor progression.


Asunto(s)
Neoplasias Óseas/genética , Proteínas de Unión al ADN/genética , Proteínas de Fusión Oncogénica/genética , Sarcoma de Ewing/genética , Factores de Transcripción/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HeLa , Células Hep G2 , Humanos , Proteínas de la Membrana/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Sarcoma de Ewing/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Gen Physiol ; 150(12): 1747-1757, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30352794

RESUMEN

Modulators of insulin secretion could be used to treat diabetes and as tools to investigate ß cell regulatory pathways in order to increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is cosecreted with insulin in MIN6 ß cells to perform a high-throughput screen of natural products for chronic effects on glucose-stimulated insulin secretion. In this study, using multiple phenotypic analyses, we found that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion by at least three potential mechanisms: disruption of Wnt signaling, interference of ß cell gene expression, and partial suppression of Ca2+ influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even after washout, but it did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx that may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. By querying the FUSION bioinformatic database, we revealed that the phenotypic effects of CMA2 cluster with a number of Wnt-GSK3 pathway-related genes. Furthermore, CMA2 consistently decreased GSK3ß phosphorylation and suppressed activation of a ß-catenin activity reporter. CMA2 and a related compound, mithramycin, are known to have DNA interaction properties, possibly abrogating transcription factor binding to critical ß cell gene promoters. We observed that CMA2 but not mithramycin suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt ß cell function through both noncytotoxic and cytotoxic mechanisms. Future therapeutic applications of CMA2 and similar aureolic acid analogues should consider their potential effects on pancreatic islet function.


Asunto(s)
Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Plicamicina/análogos & derivados , Animales , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Ratones , Plicamicina/aislamiento & purificación , Plicamicina/farmacología , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Streptomyces/química
10.
Cancer Res ; 78(21): 6196-6208, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30185546

RESUMEN

Cancer testis antigens (CTA) are expressed in testis and placenta and anomalously activated in a variety of tumors. The mechanistic contribution of CTAs to neoplastic phenotypes remains largely unknown. Using a chemigenomics approach, we find that the CTA HORMAD1 correlates with resistance to the mitochondrial complex I inhibitor piericidin A in non-small cell lung cancer (NSCLC). Resistance was due to a reductive intracellular environment that attenuated the accumulation of free radicals. In human lung adenocarcinoma (LUAD) tumors, patients expressing high HORMAD1 exhibited elevated mutational burden and reduced survival. HORMAD1 tumors were enriched for genes essential for homologous recombination (HR), and HORMAD1 promoted RAD51-filament formation, but not DNA resection, during HR. Accordingly, HORMAD1 loss enhanced sensitivity to γ-irradiation and PARP inhibition, and HORMAD1 depletion significantly reduced tumor growth in vivo These results suggest that HORMAD1 expression specifies a novel subtype of LUAD, which has adapted to mitigate DNA damage. In this setting, HORMAD1 could represent a direct target for intervention to enhance sensitivity to DNA-damaging agents or as an immunotherapeutic target in patients.Significance: This study uses a chemigenomics approach to demonstrate that anomalous expression of the CTA HORMAD1 specifies resistance to oxidative stress and promotes HR to support tumor cell survival in NSCLC. Cancer Res; 78(21); 6196-208. ©2018 AACR.


Asunto(s)
Adenocarcinoma del Pulmón/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/diagnóstico , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular , Daño del ADN , Reparación del ADN , Femenino , Radicales Libres , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos NOD , Mutágenos , Trasplante de Neoplasias , Estrés Oxidativo , Pronóstico , Recombinación Genética
12.
FEBS Open Bio ; 7(2): 174-186, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28174684

RESUMEN

The sweetener sucralose can signal through its GPCR receptor to induce insulin secretion from pancreatic ß cells, but the downstream signaling pathways involved are not well-understood. Here we measure responses to sucralose, glucagon-like peptide 1, and amino acids in MIN6 ß cells. Our data suggest a signaling axis, whereby sucralose induces calcium and cAMP, activation of ERK1/2, and site-specific phosphorylation of ribosomal protein S6. Interestingly, sucralose acted independently of mTORC1 or ribosomal S6 kinase (RSK). These results suggest that sweeteners like sucralose can influence ß-cell responses to secretagogues like glucose through metabolic as well as GPCR-mediated pathways. Future investigation of novel sweet taste receptor signaling pathways in ß cells will have implications for diabetes and other emergent fields involving these receptors.

13.
ACS Sens ; 1(10): 1208-1212, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27819058

RESUMEN

High throughput screening of insulin secretion is intractable with current methods. We developed a secreted insulin-luciferase system (Ins-GLuc) in ß cells that is rapid, inexpensive, and amenable to 96- and 384-well formats. We treated stable Ins-GLuc-expressing MIN6 cells overnight with 6298 marine natural product fractions. The cells were then washed to remove media and chemicals, followed by stimulation with glucose in the diazoxide paradigm. These conditions allowed the discovery of many insulin secretion suppressors and potentiators. The mechanisms of action of these natural products must be long-lasting given the continuance of secretory phenotypes in the absence of chemical treatment. We anticipate that these natural products and their target pathways will lead to a greater understanding of glucose-stimulated insulin secretion.

14.
Biochemistry ; 55(12): 1909-17, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26950759

RESUMEN

The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Animales , Proteína Quinasa 1 Activada por Mitógenos/química , Mutación/fisiología , Oligonucleótidos/química , Fosforilación/fisiología , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Ratas
15.
ACS Chem Biol ; 11(4): 1128-36, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26828310

RESUMEN

Novel strategies are needed to modulate ß-cell differentiation and function as potential ß-cell replacement or restorative therapies for diabetes. We previously demonstrated that small molecules based on the isoxazole scaffold drive neuroendocrine phenotypes. The nature of the effects of isoxazole compounds on ß-cells was incompletely defined. We find that isoxazole induces genes that support neuroendocrine and ß-cell phenotypes and suppresses genes important for proliferation. Isoxazole alters ß-cell metabolites and protects glucose-responsive signaling pathways under lipotoxic conditions. Finally, we show that isoxazole improves glycemia in a mouse model of ß-cell regeneration. Isoxazole is a prime candidate to alter cell fate in different contexts.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Isoxazoles/farmacología , Humanos , Islotes Pancreáticos/citología
16.
Mol Endocrinol ; 29(8): 1114-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26168033

RESUMEN

The MAPKs ERK1/2 respond to nutrients and other insulin secretagogues in pancreatic ß-cells and mediate nutrient-dependent insulin gene transcription. Nutrients also stimulate the mechanistic target of rapamycin complex 1 (mTORC1) to regulate protein synthesis. We showed previously that activation of both ERK1/2 and mTORC1 in the MIN6 pancreatic ß-cell-derived line by extracellular amino acids (AAs) is at least in part mediated by the heterodimeric T1R1/T1R3, a G protein-coupled receptor. We show here that AAs differentially activate these two signaling pathways in MIN6 cells. Pretreatment with pertussis toxin did not prevent the activation of either ERK1/2 or mTORC1 by AAs, indicating that G(I) is not central to either pathway. Although glucagon-like peptide 1, an agonist for a G(s-)coupled receptor, activated ERK1/2 well and mTORC1 to a small extent, AAs had no effect on cytosolic cAMP accumulation. Ca(2+) entry is required for ERK1/2 activation by AAs but is dispensable for AA activation of mTORC1. Pretreatment with UBO-QIC, a selective G(q) inhibitor, reduced the activation of ERK1/2 but had little effect on the activation of mTORC1 by AAs, suggesting a differential requirement for G(q). Inhibition of G(12/13) by the overexpression of the regulator of G protein signaling domain of p115 ρ-guanine nucleotide exchange factor had no effect on mTORC1 activation by AAs, suggesting that these G proteins are also not involved. We conclude that AAs regulate ERK1/2 and mTORC1 through distinct signaling pathways.


Asunto(s)
Aminoácidos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Endosomas/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Células Secretoras de Insulina/citología , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Neuronas/metabolismo , Multimerización de Proteína
17.
Mol Endocrinol ; 29(2): 274-88, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25496032

RESUMEN

Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1ß. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic ß-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Factores de Transcripción NFATC/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Glucosa/farmacología , Histona Desacetilasas/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/enzimología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Tacrolimus/farmacología , Transcripción Genética/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Clin Invest ; 124(9): 4093-101, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25133424

RESUMEN

Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic ß cells for people with diabetes and for targeting menin-sensitive endocrine tumors.


Asunto(s)
Islotes Pancreáticos/citología , Proteínas Proto-Oncogénicas/fisiología , Proteínas ras/fisiología , Adulto , Animales , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Proteínas Supresoras de Tumor/fisiología
19.
J Biol Chem ; 289(20): 14370-9, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24695728

RESUMEN

We have shown recently that the class C G protein-coupled receptor T1R1/T1R3 taste receptor complex is an early amino acid sensor in MIN6 pancreatic ß cells. Amino acids are unable to activate ERK1/2 in ß cells in which T1R3 has been depleted. The muscarinic receptor agonist carbachol activated ERK1/2 better in T1R3-depleted cells than in control cells. Ligands that activate certain G protein-coupled receptors in pancreatic ß cells potentiate glucose-stimulated insulin secretion. Among these is the M3 muscarinic acetylcholine receptor, the major muscarinic receptor in ß cells. We found that expression of M3 receptors increased in T1R3-depleted MIN6 cells and that calcium responses were altered. To determine whether these changes were related to impaired amino acid signaling, we compared responses in cells exposed to reduced amino acid concentrations. M3 receptor expression was increased, and some, but not all, changes in calcium signaling were mimicked. These findings suggest that M3 acetylcholine receptors are increased in ß cells as a mechanism to compensate for amino acid deficiency.


Asunto(s)
Aminoácidos/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor Muscarínico M3/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Carbacol/farmacología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Secretoras de Insulina/citología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Receptor Muscarínico M3/genética , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Mol Cell ; 47(6): 851-62, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22959271

RESUMEN

Cells continually assess their energy and nutrient state to maintain growth and survival and engage necessary homeostatic mechanisms. Cell-autonomous responses to the fed state require the surveillance of the availability of amino acids and other nutrients. The mammalian target of rapamycin complex 1 (mTORC1) integrates information on nutrient and amino acid availability to support protein synthesis and cell growth. We identify the G protein-coupled receptor (GPCR) T1R1/T1R3 as a direct sensor of the fed state and amino acid availability. Knocking down this receptor, which is found in most tissues, reduces the ability of amino acids to signal to mTORC1. Interfering with this receptor alters localization of mTORC1, downregulates expression of pathway inhibitors, upregulates key amino acid transporters, blocks translation initiation, and induces autophagy. These findings reveal a mechanism for communicating amino acid availability through a GPCR to mTORC1 in mammals.


Asunto(s)
Autofagia , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/metabolismo , Animales , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Biosíntesis de Proteínas , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA