Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Educ ; 100(4): 1511-1522, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37067867

RESUMEN

This paper introduces hands-on curricular modules integrated with research in atmospheric ice nucleation, which is an important phenomenon potentially influencing global climate change. The primary goal of this work is to promote meaningful laboratory exercises to enhance the competence of students in the fields of science, technology, engineering, and math (STEM) by applying an appropriate methodology to laboratory ice nucleation measurements. To achieve this goal, three laboratory modules were developed with 18 STEM interns and tested by 28 students in a classroom setting. Students were trained to experimentally simulate atmospheric ice nucleation and cloud droplet freezing. For practical training, this work utilized a simple freezing assay device called the West Texas Cryogenic Refrigerator Applied to Freezing Test (WT-CRAFT) system. More specifically, students were provided with hands-on lessons to calibrate WT-CRAFT with deionized water and apply analytical techniques to understand the physicochemical properties of bulk water and droplet freezing. All procedures to implement the developed modules were typewritten during this process, and shareable read-ahead exploration materials were developed and compiled as a curricular product. Additionally, students conducted complementary analyses to identify possible catalysts of heterogeneous freezing in the water. The water analyses included: pH, conductivity, surface tension, and electron microscopy-energy-dispersive X-ray spectroscopy. During the data and image analysis process, students learned how to analyze droplet freezing spectra as a function of temperature, screen and interpret the data, perform uncertainty analyses, and estimate ice nucleation efficiency using computer programs. Based on the formal program assessment of learning outcomes and direct (yet deidentified) student feedback, we broadly achieved our goals to (1) improve their problem-solving skills by combining multidisciplinary science and math skills and (2) disseminate data and results with variability and uncertainty. The developed modules can be applied at any institute to advance undergraduate and graduate curricula in environmental science.

2.
Chemosphere ; 280: 130625, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33964759

RESUMEN

Compound-specific isotope analysis (CSIA), position-specific isotope analysis (PSIA), and computational modeling (e.g., quantum mechanical models; reactive-transport models) are increasingly being used to monitor and predict biotic and abiotic transformations of organic contaminants in the field. However, identifying the isotope effect(s) associated with a specific transformation remains challenging in many cases. Here, we describe and interpret the position-specific isotope effects of C and N associated with a SN2Ar reaction mechanism by a combination of CSIA and PSIA using quantitative 13C nuclear magnetic resonance spectrometry, and density-functional theory, using 2,4-dinitroanisole (DNAN) as a model compound. The position-specific 13C enrichment factor of O-C1 bond at the methoxy group attachment site (εC1) was found to be approximately -41‰, a diagnostic value for transformation of DNAN to its reaction products 2,4-dinitrophenol and methanol. Theoretical kinetic isotope effects calculated for DNAN isotopologues agreed well with the position-specific isotope effects measured by CSIA and PSIA. This combination of measurements and theoretical predictions demonstrates a useful tool for evaluating degradation efficiencies and/or mechanisms of organic contaminants and may promote new and improved applications of isotope analysis in laboratory and field investigations.


Asunto(s)
Anisoles , Isótopos , Isótopos de Carbono , Hidrólisis , Espectroscopía de Resonancia Magnética
3.
Inorg Chem ; 52(24): 13865-8, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24256124

RESUMEN

Hypervalent boron centers are proposed to be key intermediates in many stoichiometric and catalytic reactions. However, structurally characterized examples remain rare. We have isolated two new borocations with formal charges of 1+ and 2+. Because the dicationic complex displays evidence of pentacoordination at the boron center, we conclude that the interaction is predominantly electrostatic and is a result of the highly electrophilic dicationic boron atom.


Asunto(s)
Boro/química , Complejos de Coordinación/química , Modelos Moleculares , Piridinas/química , Teoría Cuántica , Cationes , Complejos de Coordinación/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA