Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 61(2): 77-84, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34978431

RESUMEN

The W215A/E217A mutant thrombin is called "anticoagulant thrombin" because its activity toward its procoagulant substrate, fibrinogen, is reduced more than 500-fold whereas in the presence of thrombomodulin (TM) its activity toward its anticoagulant substrate, protein C, is reduced less than 10-fold. To understand how these mutations so dramatically alter one activity over the other, we compared the backbone dynamics of wild type thrombin to those of the W215A/E217A mutant thrombin by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS). Our results show that the mutations cause the 170s, 180s, and 220s C-terminal ß-barrel loops near the sites of mutation to exchange more, suggesting that the structure of this region is disrupted. Far from the mutation sites, residues at the N-terminus of the heavy chain, which need to be buried in the Ile pocket for correct structuring of the catalytic triad, also exchange much more than in wild type thrombin. TM binding causes reduced H/D exchange in these regions and also alters the dynamics of the ß-strand that links the TM binding site to the catalytic Asp 102 in both wild type thrombin and in the W215A/E217A mutant thrombin. In contrast, whereas TM binding reduces the dynamics the 170, 180 and 220 s C-terminal ß-barrel loops in WT thrombin, this region remains disordered in the W215A/E217A mutant thrombin. Thus, TM partially restores the catalytic activity of W215A/E217A mutant thrombin by allosterically altering its dynamics in a manner similar to that of wild type thrombin.


Asunto(s)
Fibrinógeno/metabolismo , Proteína C/metabolismo , Trombina/metabolismo , Trombomodulina/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Conformación Proteica en Lámina beta , Proteolisis , Trombina/química , Trombina/genética
2.
Sci Rep ; 11(1): 9354, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931701

RESUMEN

Serine proteases catalyze a multi-step covalent catalytic mechanism of peptide bond cleavage. It has long been assumed that serine proteases including thrombin carry-out catalysis without significant conformational rearrangement of their stable two-ß-barrel structure. We present nuclear magnetic resonance (NMR) and hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments on the thrombin-thrombomodulin (TM) complex. Thrombin promotes procoagulative fibrinogen cleavage when fibrinogen engages both the anion binding exosite 1 (ABE1) and the active site. It is thought that TM promotes cleavage of protein C by engaging ABE1 in a similar manner as fibrinogen. Thus, the thrombin-TM complex may represent the catalytically active, ABE1-engaged thrombin. Compared to apo- and active site inhibited-thrombin, we show that thrombin-TM has reduced µs-ms dynamics in the substrate binding (S1) pocket consistent with its known acceleration of protein C binding. Thrombin-TM has increased µs-ms dynamics in a ß-strand connecting the TM binding site to the catalytic aspartate. Finally, thrombin-TM had doublet peaks indicative of dynamics that are slow on the NMR timescale in residues along the interface between the two ß-barrels. Such dynamics may be responsible for facilitating the N-terminal product release and water molecule entry that are required for hydrolysis of the acyl-enzyme intermediate.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Serina Proteasas/metabolismo , Trombina/metabolismo , Trombomodulina/metabolismo , Sitios de Unión , Dominio Catalítico , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Serina Proteasas/química , Trombina/análisis , Trombina/química , Trombomodulina/análisis , Trombomodulina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...