Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Microbiol ; 61(5): e0132622, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37022168

RESUMEN

A bacterial species is considered to be intrinsically resistant to an antimicrobial when nearly all of the wild-type isolates (i.e., those without acquired resistance) exhibit minimum inhibitory concentration (MIC) values that are sufficiently high such that susceptibility testing is unnecessary, and that the antimicrobial should not be considered for therapy. Accordingly, knowledge of intrinsic resistance influences both the selection of treatment regimens and the approach to susceptibility testing in the clinical laboratory, where unexpected results also facilitate the recognition of microbial identification or susceptibility testing errors. Previously, limited data have suggested that Hafnia spp. may be intrinsically resistant to colistin. We evaluated the in vitro activity of colistin against 119 Hafniaceae that were isolated from human samples: 75 (63%) from routine clinical cultures and 44 (37%) from stool samples of travelers undergoing screening for antimicrobial resistant organisms. Broth microdilution colistin MICs were ≥4 µg/mL for 117 of 119 (98%) isolates. Whole-genome sequencing of 96 of the isolates demonstrated that the colistin-resistant phenotype was not lineage-specific. 2 of the 96 (2%) isolates harbored mobile colistin resistance genes. Compared to whole-genome sequencing, VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and VITEK 2 GN ID failed to consistently distinguish between Hafnia alvei, Hafnia paralvei, and Obesumbacterium proteus. In conclusion, using a reference antimicrobial susceptibility testing method and a genetically diverse collection of isolates, we found Hafnia spp. to be intrinsically resistant to colistin. The recognition of this phenotype will help inform rational approaches by which to perform antimicrobial susceptibility testing and therapy for patients with infections that are caused by Hafnia spp.


Asunto(s)
Antiinfecciosos , Hafnia , Humanos , Colistina/farmacología , Enterobacteriaceae , Hafnia/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
2.
Open Forum Infect Dis ; 8(2): ofaa631, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34853795

RESUMEN

BACKGROUND: Amid the enduring pandemic, there is an urgent need for expanded access to rapid, sensitive, and inexpensive coronavirus disease 2019 (COVID-19) testing worldwide without specialized equipment. We developed a simple test that uses colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect severe acute resrpiratory syndrome coronavirus 2 (SARS-CoV-2) in 40 minutes from sample collection to result. METHODS: We tested 135 nasopharyngeal specimens from patients evaluated for COVID-19 infection at Massachusetts General Hospital. Specimens were either added directly to RT-LAMP reactions, inactivated by a combined chemical and heat treatment step, or inactivated then purified with a silica particle-based concentration method. Amplification was performed with 2 SARS-CoV-2-specific primer sets and an internal specimen control; the resulting color change was visually interpreted. RESULTS: Direct RT-LAMP testing of unprocessed specimens could only reliably detect samples with abundant SARS-CoV-2 (>3 000 000 copies/mL), with sensitivities of 50% (95% CI, 28%-72%) and 59% (95% CI, 43%-73%) in samples collected in universal transport medium and saline, respectively, compared with quantitative polymerase chain reaction (qPCR). Adding an upfront RNase inactivation step markedly improved the limit of detection to at least 25 000 copies/mL, with 87.5% (95% CI, 72%-95%) sensitivity and 100% specificity (95% CI, 87%-100%). Using both inactivation and purification increased the assay sensitivity by 10-fold, achieving a limit of detection comparable to commercial real-time PCR-based diagnostics. CONCLUSIONS: By incorporating a fast and inexpensive sample preparation step, RT-LAMP accurately detects SARS-CoV-2 with limited equipment for about US$6 per sample, making this a potentially ideal assay to increase testing capacity, especially in resource-limited settings.

3.
J Clin Pathol ; 74(8): 496-503, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34049977

RESUMEN

Developing and deploying new diagnostic tests are difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important. During a pandemic, laboratories play a key role in helping healthcare providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, PCR remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular-based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to establishing fast and accurate diagnostic testing in crisis conditions.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Servicio de Urgencia en Hospital , Laboratorios de Hospital , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , COVID-19/virología , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...