Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Infect Dis ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636496

RESUMEN

Respiratory syncytial virus (RSV) causes severe infections in infants, immunocompromised or elderly individuals resulting in annual epidemics of respiratory disease. Currently, limited clinical surveillance and the lack of predictable seasonal dynamics limits the public health response. Wastewater-based epidemiology (WBE) has recently been used globally as a key metric in determining prevalence of SARS-CoV-2 in the community but its application to other respiratory viruses is limited. In this study, we present an integrated genomic WBE approach, applying RT-qPCR and partial G-gene sequencing to track RSV levels and variants in the community. We report increasing detection of RSV in wastewater concomitant with increasing numbers of positive clinical cases. Analysis of wastewater-derived RSV sequences permitted identification of distinct circulating lineages within and between seasons. Altogether, our genomic WBE platform has the potential to complement ongoing global surveillance and aid the management of RSV by informing the timely deployment of pharmaceutical and non-pharmaceutical interventions.

2.
J Appl Microbiol ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38244225

RESUMEN

AIM: Hospital-acquired infections (HAIs) caused by antimicrobial-resistant ESKAPE pathogens are a significant concern for the healthcare industry, with an estimated cost of up to ${\$}$45 billion per year in the US alone. Clostridioides difficile is an additional opportunistic pathogen that also poses a serious threat to immunocompromised patients in hospitals. Infections caused by these pathogens lead to increased hospital stays and repeated readmission, resulting in a significant economic burden. Disinfectants and sporicidals are essential to reduce the risk of these pathogens in hospitals, but commercially available products can have a number of disadvantages including inefficacy, long contact times, short shelf lives, and operator health hazards. In this study we evaluated the effectiveness of Rosin (a natural substance secreted by coniferous trees as a defence mechanism against wounds in tree bark) and its commercial derivative Rosetax-21 as disinfectants and sporicidal against the six ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and spore preparations from Clostridioides difficile. METHODS AND RESULTS: Both Rosin and Rosetax-21 were tested under simulated clean and dirty conditions (with BSA) against the ESKAPE pathogens, and C. difficile spore preparations. In clean conditions, Rosin (5% weight/volume: w/v) demonstrated significant efficacy against five of the ESKAPE pathogens, with A. baumannii and E. faecium being the most susceptible, and K. pneumoniae the most resistant, showing only a one-log reduction after a 5 min treatment. However, in dirty conditions, all pathogens including K. pneumoniae exhibited at least a 3-log reduction to Rosin within 5 min. Rosetax-21 (5% w/v) was found to be less effective than Rosin in clean conditions, a trend that was exacerbated in the presence of BSA. Additionally, both Rosin and Rosetax-21 at 2.5% (w/v) achieved complete eradication of C. difficile spores when combined with 0.5% glutaraldehyde, though their standalone sporicidal activity was limited. CONCLUSIONS: The findings from this study highlight the potential of Rosin and Rosetax-21 as both bactericidal and sporicidal disinfectants, with their efficacy varying based on the conditions and the pathogens tested. This presents an avenue for the development of novel healthcare disinfection strategies, especially against HAIs caused by antimicrobial-resistant ESKAPE pathogens and C. difficile.

3.
Microb Genom ; 9(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37768179

RESUMEN

Clostridioides difficile, the leading cause of antibiotic-associated diarrhoea worldwide, is a genetically diverse species which can metabolise a number of nutrient sources upon colonising a dysbiotic gut environment. Trehalose, a disaccharide sugar consisting of two glucose molecules bonded by an α 1,1-glycosidic bond, has been hypothesised to be involved in the emergence of C. difficile hypervirulence due to its increased utilisation by the RT027 and RT078 strains. Here, growth in trehalose as the sole carbon source was shown to be non-uniform across representative C. difficile strains, even though the genes for its metabolism were induced. Growth in trehalose reduced the expression of genes associated with toxin production and sporulation in the C. difficile R20291 (RT027) and M120 (RT078) strains in vitro, suggesting an inhibitory effect on virulence factors. Interestingly, the R20291 TreR transcriptional regulatory protein appeared to possess an activator function as its DNA-binding ability was increased in the presence of its effector, trehalose-6-phosphate. Using RNA-sequencing analysis, we report the identification of a putative trehalose metabolism pathway which is induced during growth in trehalose: this has not been previously described within the C. difficile species. These data demonstrate the metabolic diversity exhibited by C. difficile which warrants further investigation to elucidate the molecular basis of trehalose metabolism within this important gut pathogen.

4.
Front Microbiol ; 14: 1239189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601379

RESUMEN

Energy metabolism in extant life is centered around phosphate and the energy-dense phosphoanhydride bonds of adenosine triphosphate (ATP), a deeply conserved and ancient bioenergetic system. Yet, ATP synthesis relies on numerous complex enzymes and has an autocatalytic requirement for ATP itself. This implies the existence of evolutionarily simpler bioenergetic pathways and potentially primordial alternatives to ATP. The centrality of phosphate in modern bioenergetics, coupled with the energetic properties of phosphorylated compounds, may suggest that primordial precursors to ATP also utilized phosphate in compounds such as pyrophosphate, acetyl phosphate and polyphosphate. However, bioavailable phosphate may have been notably scarce on the early Earth, raising doubts about the roles that phosphorylated molecules might have played in the early evolution of life. A largely overlooked phosphorus redox cycle on the ancient Earth might have provided phosphorus and energy, with reduced phosphorus compounds potentially playing a key role in the early evolution of energy metabolism. Here, we speculate on the biological phosphorus compounds that may have acted as primordial energy currencies, sources of environmental energy, or sources of phosphorus for the synthesis of phosphorylated energy currencies. This review encompasses discussions on the evolutionary history of modern bioenergetics, and specifically those pathways with primordial relevance, and the geochemistry of bioavailable phosphorus on the ancient Earth. We highlight the importance of phosphorus, not only in the form of phosphate, to early biology and suggest future directions of study that may improve our understanding of the early evolution of bioenergetics.

5.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37133410

RESUMEN

Wastewater Based Epidemiology (WBE) has become an integral part of the public health effort to track the levels of SARS-CoV-2 within communities. Detection of SARS-CoV-2 in wastewater can be challenging due to relatively low levels of virus within the sample. The wastewater matrix is also comprised of commercial and domestically derived contaminants, as well as RNases, all of which can adversely affect RT-qPCR analysis. To improve SARS-CoV-2 detection within wastewater samples we investigated both the effect of template dilution (as a means to reduce RT-qPCR inhibition) and sample stabilisation via addition of DNA/RNA Shield™ and/or RNA Later™ (to prevent RNA degradation via RNases) as a means to improve viral fragment detection. Using both methodologies, a significant improvement in SARS-CoV-2 detection from wastewater samples was observed. No adverse effects of stabilising agent addition on downstream Next-Generation Sequencing workflows were detected.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Excipientes , Aguas Residuales , ARN , ARN Viral/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-36748477

RESUMEN

A new species of Terrisporobacter, a Gram-positive, spore-forming anaerobic group, proposed name Terrisporobacter hibernicus sp. nov., was isolated in Northern Ireland from bovine faeces collected in 2016. Designated as MCA3T, cells of T. hibernicus sp. nov. are rod shaped and motile. Cells tolerate NaCl from 0.5 to 5.5 % (w/v), with a pH tolerance between pH 6 and 9. The optimal temperature for growth is 35-40 °C, and temperatures from 20 to 30 °C are tolerated. The polar lipid profile displays diphosphatidylglycerol, phosphatidylglycerol, two aminoglycolipids, one glycophospholipid, one aminolipid, three glycolipids, five phospholipids and one lipid. No respiratory quinones are detected. The predominant fatty acid profile includes C16 : 0 at 22.8 %. Strain MCA3T is positive for glucose and maltose acidification, as well as glycerol and sorbitol. The biochemical results from a VITEK2 assay of strain MCA3T, Terrisporobacter petrolearius LAM0A37T and Terrisporobacter mayombei DSM 6539T are also included for the first time. The closed and complete genome of strain MCA3T from a hybrid Oxford Nanopore Technology MinION/Illumina assembly reveals no evidence for known virulence genes. Draft genome sequencing of T. mayombei DSM 6539T and T. petrolearius LAM0A37T, as performed by Illumina MiSeq, provides reference genomes for these respective species of Terrisporobacter for the first time. DNA-DNA hybridization values (d4) of MCA3T to Terrisporobacter glycolicus ATCC 14880T, T. petrolearius LAM0A37T and T. mayombei DSM 6539T are 48.8, 67.4 and 46.3 %, with cutoff value at 70 %. The type strain for T. hibernicus sp. nov. is MCA3T (=NCTC 14625T=LMG 32430T).


Asunto(s)
Ácidos Grasos , Fosfolípidos , Animales , Bovinos , Ácidos Grasos/química , Irlanda del Norte , Filogenia , Composición de Base , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/análisis , Hibridación de Ácido Nucleico , Heces
7.
PLoS Pathog ; 19(1): e1011034, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602960

RESUMEN

Clostridioides difficile (C. difficile) is an opportunistic pathogen that leads to antibiotic-associated diarrhoea and is a leading cause of morbidity and mortality worldwide. Antibiotic usage is the main risk factor leading to C. difficile infection (CDI), as a dysbiotic gut environment allows colonisation and eventual pathology manifested by toxin production. Although colonisation resistance is mediated by the action of secondary bile acids inhibiting vegetative outgrowth, nutrient competition also plays a role in preventing CDI as the gut microbiota compete for nutrient niches inhibiting C. difficile growth. C. difficile is able to metabolise carbon dioxide, the amino acids proline, hydroxyproline, and ornithine, the cell membrane constituent ethanolamine, and the carbohydrates trehalose, cellobiose, sorbitol, and mucin degradation products as carbon and energy sources through multiple pathways. Zinc sequestration by the host response mediates metabolic adaptation of C. difficile by perhaps signalling an inflamed gut allowing it to acquire abundant nutrients. Persistence within the gut environment is also mediated by the by-products of metabolism through the production of p-cresol, which inhibit gut commensal species growth promoting dysbiosis. This review aims to explore and describe the various metabolic pathways of C. difficile, which facilitate its survival and pathogenesis within the colonised host gut.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Humanos , Clostridioides difficile/metabolismo , Clostridioides , Antibacterianos/farmacología , Infecciones por Clostridium/metabolismo
8.
Sci Total Environ ; 857(Pt 2): 159579, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270375

RESUMEN

As of 8 July 2022, the World Health Organization (WHO) have reported 1010 probable cases of acute hepatitis of unknown aetiology in children worldwide, including approximately 250 cases in the United Kingdom (UK). Clinical presentations have often been severe, with liver transplantation a frequent clinical outcome. Human adenovirus F41 (HAdV-F41) has been detected in most children with acute hepatitis, but its role in the pathogenesis of this infection has yet to be established. Wastewater-based epidemiology (WBE) has become a well-established tool for monitoring the community spread of SARS-CoV-2, as well as other pathogens and chemicals. In this study, we adopted a WBE approach to monitoring levels of HAdV-F40/41 in wastewater before and during an acute hepatitis outbreak in Northern Ireland. We report increasing detection of HAdV-F40/41 in wastewater, concomitant with increasing numbers of clinical cases. Amplicon whole genome sequencing further classified the wastewater-derived HAdV as belonging to the F41 genotype which in turn was homologous to clinically derived sequences. We propose that WBE has the potential to inform community surveillance of HAdV-F41 and can further contribute to the ongoing global discussion supporting HAdV-F41 involvement in acute hepatitis cases.


Asunto(s)
Adenovirus Humanos , COVID-19 , Hepatitis , Niño , Humanos , Aguas Residuales , SARS-CoV-2 , Enfermedad Aguda
9.
Front Microbiol ; 13: 897905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875563

RESUMEN

Antimicrobial resistance (AMR) is a serious threat to public health globally; it is estimated that AMR bacteria caused 1.27 million deaths in 2019, and this is set to rise to 10 million deaths annually. Agricultural and soil environments act as antimicrobial resistance gene (ARG) reservoirs, operating as a link between different ecosystems and enabling the mixing and dissemination of resistance genes. Due to the close interactions between humans and agricultural environments, these AMR gene reservoirs are a major risk to both human and animal health. In this study, we aimed to identify the resistance gene reservoirs present in four microbiomes: poultry, ruminant, swine gastrointestinal (GI) tracts coupled with those from soil. This large study brings together every poultry, swine, ruminant, and soil shotgun metagenomic sequence available on the NCBI sequence read archive for the first time. We use the ResFinder database to identify acquired antimicrobial resistance genes in over 5,800 metagenomes. ARGs were diverse and widespread within the metagenomes, with 235, 101, 167, and 182 different resistance genes identified in the poultry, ruminant, swine, and soil microbiomes, respectively. The tetracycline resistance genes were the most widespread in the livestock GI microbiomes, including tet(W)_1, tet(Q)_1, tet(O)_1, and tet(44)_1. The tet(W)_1 resistance gene was found in 99% of livestock GI tract microbiomes, while tet(Q)_1 was identified in 93%, tet(O)_1 in 82%, and finally tet(44)_1 in 69%. Metatranscriptomic analysis confirmed these genes were "real" and expressed in one or more of the livestock GI tract microbiomes, with tet(40)_1 and tet(O)_1 expressed in all three livestock microbiomes. In soil, the most abundant ARG was the oleandomycin resistance gene, ole(B)_1. A total of 55 resistance genes were shared by the four microbiomes, with 11 ARGs actively expressed in two or more microbiomes. By using all available metagenomes we were able to mine a large number of samples and describe resistomes in 37 countries. This study provides a global insight into the diverse and abundant antimicrobial resistance gene reservoirs present in both livestock and soil microbiomes.

10.
J Hazard Mater ; 424(Pt B): 127456, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34655869

RESUMEN

The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. In the United Kingdom, the evidence that wastewater could be used to monitor the SARS-CoV-2 virus prompted the development of National wastewater surveillance programmes. The scale and pace of this work has proven to be unique in monitoring of virus dynamics at a national level, demonstrating the importance of wastewater-based epidemiology (WBE) for public health protection. Beyond COVID-19, it can provide additional value for monitoring and informing on a range of biological and chemical markers of human health. A discussion of measurement uncertainty associated with surveillance of wastewater, focusing on lessons-learned from the UK programmes monitoring COVID-19 is presented, showing that sources of uncertainty impacting measurement quality and interpretation of data for public health decision-making, are varied and complex. While some factors remain poorly understood, we present approaches taken by the UK programmes to manage and mitigate the more tractable sources of uncertainty. This work provides a platform to integrate uncertainty management into WBE activities as part of global One Health initiatives beyond the pandemic.


Asunto(s)
COVID-19 , Pandemias , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Incertidumbre , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
11.
Microbiol Spectr ; 9(3): e0109121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935417

RESUMEN

Chemical methods of virus inactivation are used routinely to prevent viral transmission in both a personal hygiene capacity but also in at-risk environments like hospitals. Several virucidal products exist, including hand soaps, gels, and surface disinfectants. Resin acids, which can be derived from tall oil, produced from trees, have been shown to exhibit antibacterial activity. However, whether these products or their derivatives have virucidal activity is unknown. Here, we assessed the capacity of rosin soap to inactivate a panel of pathogenic mammalian viruses in vitro. We show that rosin soap can inactivate human enveloped viruses: influenza A virus (IAV), respiratory syncytial virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For IAV, rosin soap could provide a 100,000-fold reduction in infectivity. However, rosin soap failed to affect the nonenveloped encephalomyocarditis virus (EMCV). The inhibitory effect of rosin soap against IAV infectivity was dependent on its concentration but not on the incubation time or temperature. In all, we demonstrate a novel chemical inactivation method against enveloped viruses, which could be of use for preventing virus infections in certain settings. IMPORTANCE Viruses remain a significant cause of human disease and death, most notably illustrated through the current coronavirus disease 2019 (COVID-19) pandemic. Control of virus infection continues to pose a significant global health challenge to the human population. Viruses can spread through multiple routes, including via environmental and surface contamination, where viruses can remain infectious for days. Methods for inactivating viruses on such surfaces may help mitigate infection. Here, we present evidence identifying a novel virucidal product, rosin soap, which is produced from tall oil from coniferous trees. Rosin soap was able to rapidly and potently inactivate influenza virus and other enveloped viruses.


Asunto(s)
Antivirales/farmacología , Resinas de Plantas/farmacología , Jabones/farmacología , Antivirales/análisis , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/crecimiento & desarrollo , Aceites de Plantas/análisis , Aceites de Plantas/farmacología , Resinas de Plantas/análisis , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Jabones/análisis , Inactivación de Virus/efectos de los fármacos
12.
Curr Pollut Rep ; 6(3): 264-280, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879840

RESUMEN

"Innovative actions towards a pollution free-planet" is a goal of the United Nations Environment Assembly (UNEA). Aided by both the Food and Agricultural Organisation (FAO) and its Global Soil Partnership under the 3rd UNEA resolution, a consensus from > 170 countries have agreed a need for accelerated action and collaboration to combat soil pollution. This initiative has been tasked to find new and improved solutions to prevent and reduce soil pollution, and it is in this context that this review provides an updated perspective on an emerging technology platform that has already provided demonstrable utility for measurement, mapping, and monitoring of toxic trace elements (TTEs) in soils, in addition to the entrapment, removal, and remediation of pollutant sources. In this article, the development and characteristics of functionalized mesoporous silica nanomaterials (FMSN) will be discussed and compared with other common metal scavenging materials. The chemistries of the common functionalizations will be reviewed, in addition to providing an outlook on some of the future directions/applications of FMSN. The use of FMSN in soil will be considered with some specific case studies focusing on Hg and As. Finally, the advantages and developments of FMSN in the widely used diffusive gradients-in-thin films (DGT) technique will be discussed, in particular, its advantages as a DGT substrate for integration with oxygen planar optodes in multilayer systems that provide 2D mapping of metal pollutant fluxes at submillimeter resolution, which can be used to measure detailed sediment-water fluxes as well as soil-root interactions, to predict plant uptake and bioavailability.

13.
Sci Rep ; 9(1): 17101, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745137

RESUMEN

Inorganic polyphosphate (polyP) is ubiquitous across all forms of life, but the study of its metabolism has been mainly confined to bacteria and yeasts. Few reports detail the presence and accumulation of polyP in Archaea, and little information is available on its functions and regulation. Here, we report that homologs of bacterial polyP metabolism proteins are present across the major taxa in the Archaea, suggesting that archaeal populations may have a greater contribution to global phosphorus cycling than has previously been recognised. We also demonstrate that polyP accumulation can be induced under strictly anaerobic conditions, in response to changes in phosphate (Pi) availability, i.e. Pi starvation, followed by incubation in Pi replete media (overplus), in cells of the methanogenic archaeon Methanosarcina mazei. Pi-starved M. mazei cells increased transcript abundance of the alkaline phosphatase (phoA) gene and of the high-affinity phosphate transport (pstSCAB-phoU) operon: no increase in polyphosphate kinase 1 (ppk1) transcript abundance was observed. Subsequent incubation of Pi-starved M. mazei cells under Pi replete conditions, led to a 237% increase in intracellular polyphosphate content and a > 5.7-fold increase in ppk1 gene transcripts. Ppk1 expression in M. mazei thus appears not to be under classical phosphate starvation control.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanosarcina/crecimiento & desarrollo , Methanosarcina/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Anaerobiosis , Proteínas Arqueales/genética
14.
Appl Microbiol Biotechnol ; 103(14): 5727-5737, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31123770

RESUMEN

Transaminase enzymes (TAms) are becoming increasingly valuable in the chemist's toolbox as a biocatalytic route to chiral amines. Despite high profile successes, the lack of (R)-selective TAms and robustness under harsh industrial conditions continue to prove problematic. Herein, we report the isolation of the first haloarchaeal TAm (BC61-TAm) to be characterised for the purposes of pharmaceutical biocatalysis. BC61-TAm is an (R)-selective enzyme, cloned from an extremely halophilic archaeon, isolated from a Triassic period salt mine. Produced using a Haloferax volcanii-based expression model, the resulting protein displays a classic halophilic activity profile, as well as thermotolerance (optimum 50 °C) and organic solvent tolerance. Molecular modelling predicts the putative active site residues of haloarchaeal TAms, with molecular dynamics simulations providing insights on the basis of BC61-TAm's organic solvent tolerance. These results represent an exciting advance in the study of transaminases from extremophiles, providing a possible scaffold for future discovery of biocatalytic enzymes with robust properties.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/metabolismo , Minería , Cloruro de Sodio , Transaminasas/metabolismo , Aminas/metabolismo , Archaea/genética , Proteínas Arqueales/genética , Biocatálisis , Haloferax volcanii/enzimología , Haloferax volcanii/genética , Simulación de Dinámica Molecular , Solventes/metabolismo , Especificidad por Sustrato , Termotolerancia , Transaminasas/genética
16.
Sci Total Environ ; 656: 852-861, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530153

RESUMEN

Phosphorus is an essential part of the world food web and a non-substitutable nutrient in all biological systems. Losses of phosphorus occur along the food-supply chain and cause environmental degradation and eutrophication. A key global challenge is to meet rising worldwide food demand while protecting water and environmental quality, and seeking to manage uncertainty around potential future phosphorus price or supply shocks. This paper presents a stakeholder-generated conceptual model of potential transformative change for implementing phosphorus sustainability on the island of Ireland via an 'All-Island Phosphorus Sustainability' workshop. Key transition pathways identified by stakeholders included: incentivising phosphorus recovery, developing collaborative networks to facilitate change, developing markets and value chains for recovered products; implementing data-informed practices on-farm to prevent losses and increase efficiencies, and harmonisation of technologies with end-user needs. A comparable model was previously produced for the North American region. We describe consensus and differences around key priorities between the two regions' conceptual models, and assess how the model produced for the island of Ireland can effect system-wide change and policy moving forward. Many of the transitional pathways and future aspirations presented in both models resonate globally and are highly pertinent to other jurisdictions.

17.
Sci Total Environ ; 649: 90-98, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172137

RESUMEN

Despite greater emphasis on holistic phosphorus (P) management, current nutrient advice delivered at farm-scale still focuses almost exclusively on agricultural production. This limits our ability to address national and international strategies for the delivery of multiple ecosystem services (ES). Currently there is no operational framework in place to manage P fertility for multiple ES delivery and to identify the costs of potentially sacrificing crop yield and/or quality. As soil P fertility plays a central role in ES delivery, we argue that soil test phosphorus (STP) concentration provides a suitable common unit of measure by which delivering multiple ES can be economically valued relative to maximum potential yield, in $ ha-1 yr-1 units. This value can then be traded, or payments made against one another, at spatio-temporal scales relevant for farmer and national policy objectives. Implementation of this framework into current P fertility management strategies would allow for the integration and interaction of different stakeholder interests in ES delivery on-farm and in the wider landscape. Further progress in biophysical modeling of soil P dynamics is needed to inform its adoption across diverse landscapes.


Asunto(s)
Agricultura/métodos , Ecosistema , Fertilizantes/análisis , Fósforo/administración & dosificación , Suelo/química , Producción de Cultivos/métodos
18.
Anaerobe ; 54: 92-99, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30118894

RESUMEN

Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Effective recovery of spores, particularly in low numbers, is imperative to obtain accurate prevalence data, due to the low number of spores found within non-clinical samples (<20/ml). Through comparison of C. difficile enrichment media, this study showed the importance of selecting an effective enrichment media. Commonly used broths, such as Cooked Meat broth, promote significantly less growth than other available broths such as Brain Heart Infusion broth, BHI. The optimization of BHI using selective antibiotics, moxalactam and norfloxacin, and sodium taurocholate at a concentration of 0.4%, allowed for high growth rate (0.465 h-1), short lag times (<14 h) and recovery of spores at low concentrations. The optimized broth, designated BHIMN-T, out-performed other commonly used broths so can be recommended for future studies.


Asunto(s)
Medios de Cultivo/química , Técnicas Bacteriológicas/métodos , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/aislamiento & purificación , Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Medios de Cultivo/metabolismo , Humanos , Moxalactam/metabolismo , Norfloxacino/metabolismo
19.
Biochem Biophys Res Commun ; 503(4): 2936-2942, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30119883

RESUMEN

Chiral amines are valuable building blocks for the pharmaceutical industry, and are increasingly synthesized by transaminase-mediated (TAm) synthesis. Currently available TAms, primarily isolated from the genomes of cultured mesophilic bacteria, often suffer from a number of drawbacks, including poor substrate range and an inability to tolerate the harsh conditions often demanded by industrial processes. These characteristics have, in part, driven the search for novel biocatalysts from both metagenomic sources and extreme environments. Herein, we report the isolation and characterization of an ω-TAm from a metagenome of a Triassic salt mine in Kilroot, N. Ireland, an extremely hypersaline environment formed circa 220-250 mya. The gene sequence was identified based on homology with existing bacterial TAms, synthesized within a pET28a(+) plasmid and expressed in E. coli BL21 DE3 cells. The resultant 49 kDa protein accepted (S)-methylbenzylamine (MBA) as amino donor and had a specific activity of 0.54 U/mg using α-ketoglutarate (ΑKG) as substrate. Molecular modeling and substrate docking indicated the presence of key residues, conserved in a number of other TAms. Despite the hypersaline environment from which it was isolated, the enzyme displayed low halotolerance, highlighting that not all biocatalysts will demonstrate the extreme characteristics associated with their source environment. This study does however reinforce the viability of mining metagenomic datasets as a means of discovering novel and functional biocatalysts, and adds to a currently scant list of such examples in the field of TAms.


Asunto(s)
Metagenoma , Minería , Salinidad , Transaminasas/genética , Biocatálisis , Irlanda , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Análisis de Secuencia de ADN
20.
J Mol Model ; 24(7): 144, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858666

RESUMEN

The T7 DNA polymerase is dependent on the host protein thioredoxin (trx) for its processivity and fidelity. Using all-atom molecular dynamics, we demonstrate the specific interactions between trx and the T7 polymerase, and show that trx docking to its binding domain on the polymerase results in a significant level of stability and exposes a series of basic residues within the domain that interact with the phosphodiester backbone of the DNA template. We also characterize the nature of interactions between the T7 DNA polymerase and its DNA template. We show that the trx-binding domain acts as an intrinsic clamp, constraining the DNA via a two-step hinge motion, and characterize the interactions necessary for this to occur. Together, these insights provide a significantly improved understanding of the interactions responsible for highly processive DNA replication by T7 polymerase.


Asunto(s)
Bacteriófago T7/enzimología , ADN Polimerasa Dirigida por ADN/química , Simulación de Dinámica Molecular , Sitios de Unión , Análisis por Conglomerados , ADN/química , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Hidrógeno/química , Concentración de Iones de Hidrógeno , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...