Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960564

RESUMEN

The pH behavior in the µm to cm thick diffusion boundary layer (DBL) surrounding many aquatic species is dependent on light-controlled metabolic activities. This DBL microenvironment exhibits different pH behavior to bulk seawater, which can reduce the exposure of calcifying species to ocean acidification conditions. A low-cost time-domain dual-lifetime referencing (t-DLR) interrogation system and an optical fiber fluorescent pH sensor were developed for pH measurements in the DBL interface. The pH sensor utilized dual-layer sol-gel coatings of pH-sensitive iminocoumarin and pH-insensitive Ru(dpp)3-PAN. The sensor has a dynamic range of 7.41 (±0.20) to 9.42 ± 0.23 pH units (95% CI, T = 20 °C, S = 35), a response time (t90) of 29 to 100 s, and minimal salinity dependency. The pH sensor has a precision of approximately 0.02 pHT units, which meets the Global Ocean Acidification Observing Network (GOA-ON) "weather" measurement quality guideline. The suitability of the t-DLR optical fiber pH sensor was demonstrated through real-time measurements in the DBL of green seaweed Ulva sp. This research highlights the practicability of optical fiber pH sensors by demonstrating real-time pH measurements of metabolic-induced pH changes.

2.
ACS Sens ; 8(7): 2432-2439, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37409449

RESUMEN

Although there is a growing demand for new sensors for environmental monitoring, biofouling continues to plague current sensors and sensing networks. As soon as a sensor is placed in water, the formation of a biofilm begins. Once a biofilm is established, reliable measurements are often no longer possible. Although current biofouling mitigation strategies can slow the biofouling process, a biofilm will eventually develop on or near the sensing surface. While antibiofouling strategies are being continuously developed, the complexity of the biofilm community structure and the surrounding environment means that there is unlikely to be a single solution that will minimize biofilms on all environmental sensors. Thus, antibiofouling research often focuses on optimizing a specific biofilm mitigation approach for a given sensor, application, and environmental condition. While this is practical from the standpoint of a sensor developer, it makes the comparison of different mitigation strategies difficult. In this Perspective, we discuss the application of different biofouling mitigation strategies to sensing and then explore the need for the sensor community to adopt standard protocols to increase the comparability of the biofouling mitigation approaches and help sensor developers identify the most appropriate strategy for their system.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Biopelículas , Agua
3.
Anal Methods ; 15(22): 2773-2776, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37211831

RESUMEN

Biofouling is a major challenge in environmental sensing. Current mitigation strategies are often expensive, energy consuming or require toxic chemicals. In this contribution electrochemical biofouling control is evaluated as an alternative approach to reduce biofouling on an optical O2 sensor (optode). By using the outer stainless-steel sleeve of the optode as an electrode, water splitting increases the local pH and forms H2 bubbles close to the optode surface. As seen in a biofouling assay, the combination of those processes leads to biofilm removal when compared to a non-modified optode. The findings suggest that electrochemical biofouling control can be an attractive, low-cost alternative to current biofouling mitigation strategies and that this approach may not be limited to O2 optodes.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Incrustaciones Biológicas/prevención & control , Agua , Biopelículas , Oxígeno/análisis
4.
Talanta ; 225: 121969, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592803

RESUMEN

This study presents the development of an optical fiber pH sensor based on evanescent wave absorbance for continuous pH measurements in marine microenvironments. The sensing layer consists of an optimized sol-gel matrix of tetraethoxysilane and dimethyldiethoxysilane, which substantially improves the entrapment efficiency of the pH indicator meta-cresol purple, leading to a long useable lifetime. The optical fiber pH sensor conforms to the Global Ocean Acidification Observing Network "weather" measurement quality guideline with precision of approximately 0.02 pH units, has a dynamic pHT range of 7.4-9.7 in seawater, a response time of 2.5-6.5 min and a useable lifetime of 7 days. The optical fiber pH sensor has additional advantages of being self-referencing, without the need of an external sensor reference, having a simple fabrication method and basic spectrometer instrumentation. The suitability of the optical fiber pH sensor was demonstrated in real-time measurements of the ecologically significant green seaweed Ulva sp. The optical fiber pH sensor monitored pH variations due to metabolic activity over 7 days within the seaweed canopy and 4 days within the diffusion boundary layer interface, demonstrating the suitability for measurements in marine microenvironments.

5.
Glob Chang Biol ; 26(6): 3512-3524, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32105368

RESUMEN

Marine heatwaves are extreme events that can have profound and lasting impacts on marine species. Field observations have shown seaweeds to be highly susceptible to marine heatwaves, but the physiological drivers of this susceptibility are poorly understood. Furthermore, the effects of marine heatwaves in conjunction with ocean warming and acidification are yet to be investigated. To address this knowledge gap, we conducted a laboratory culture experiment in which we tested the growth and physiological responses of Phyllospora comosa juveniles from the southern extent of its range (43-31°S) to marine heatwaves, ocean warming and acidification. We used a 'collapsed factorial design' in which marine heatwaves were superimposed on current (today's pH and temperature) and future (pH and temperature projected by 2100) ocean conditions. Responses were tested both during the heatwaves, and after a 7-day recovery period. Heatwaves reduced net photosynthetic rates in both current and future conditions, while respiration rates were elevated under heatwaves in the current conditions only. Following the recovery period, there was little evidence of heatwaves having lasting negative effects on growth, photosynthesis or respiration. Exposure to heatwaves, future ocean conditions or both caused an increase in the degree of saturation of fatty acids. This adjustment may have counteracted negative effects of elevated temperatures by decreasing membrane fluidity, which increases at higher temperatures. Furthermore, P. comosa appeared to down-regulate the energetically expensive carbon dioxide concentrating mechanism in the future conditions with a reduction in δ13 C values detected in these treatments. Any saved energy arising from this down-regulation was not invested in growth and was likely invested in the adjustment of fatty acid composition. This adjustment is a mechanism by which P. comosa and other seaweeds may tolerate the negative effects of ocean warming and marine heatwaves through benefits arising from ocean acidification.


Asunto(s)
Algas Marinas , Ecosistema , Ácidos Grasos , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar , Temperatura
6.
ACS Sens ; 5(1): 250-257, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31845574

RESUMEN

Although IUPAC has recommended a probabilistic approach to determining limit of detection (LOD) based on false-positive and false-negative rates for more than 20 years, the LOD definition for ion-selective electrodes (ISEs) long predates these recommendations and conflicts substantively with them. Although it is well known that the ISE LOD definition does not follow best practice, it continues to be used due to simplicity and a lack of available methods for estimating LOD for nonlinear sensors. Here, we use ISEs as a model system for estimation of LOD for nonlinear sensors that is consistent with broad IUPAC recommendations and justified using statistical theory. Using freely available software, the new approach and updated definition is demonstrated through theory, simulation, and an environmental application. The results show that the current LOD definition for ISEs performs substantially worse than the proposed definition when assessed against IUPAC recommendations, including ignoring sensor noise and LOD uncertainty, leading to bias of an order of magnitude or more. Further, the environmental application shows that the new definition, which includes estimates of LOD uncertainty, allows more objective assessment of sensor response and fitness for purpose. The growing demand for ultrasensitive sensors that operate in complex matrices has pushed the boundaries of traditional calibration approaches. These sensors often operate near their limit of detection (LOD), with additional challenges created if their response is nonlinear. These challenges are amplified when assessing new sensors, since they may be less reproducible and noisier than benchmark techniques.


Asunto(s)
Electrodos de Iones Selectos/normas , Calibración , Humanos , Límite de Detección
7.
Sensors (Basel) ; 19(20)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635039

RESUMEN

A new software package, ISEtools, is introduced for use within the popular open-source programming language R that allows Bayesian statistical data analysis techniques to be implemented in a straightforward manner. Incorporating all collected data simultaneously, this Bayesian approach naturally accommodates sensor arrays and provides improved limit of detection estimates, including providing appropriate uncertainty estimates. Utilising >1500 lines of code, ISEtools provides a set of three core functions-loadISEdata, describeISE, and analyseISE- for analysing ion-selective electrode data using the Nikolskii-Eisenman equation. The functions call, fit, and extract results from Bayesian models, automatically determining data structures, applying appropriate models, and returning results in an easily interpretable manner and with publication-ready figures. Importantly, while advanced statistical and computationally intensive methods are employed, the functions are designed to be accessible to non-specialists. Here we describe basic features of the package, demonstrated through a worked environmental application.

8.
Ecol Evol ; 9(1): 125-140, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680101

RESUMEN

Increased plant biomass is observed in terrestrial systems due to rising levels of atmospheric CO2, but responses of marine macroalgae to CO2 enrichment are unclear. The 200% increase in CO2 by 2100 is predicted to enhance the productivity of fleshy macroalgae that acquire inorganic carbon solely as CO2 (non-carbon dioxide-concentrating mechanism [CCM] species-i.e., species without a carbon dioxide-concentrating mechanism), whereas those that additionally uptake bicarbonate (CCM species) are predicted to respond neutrally or positively depending on their affinity for bicarbonate. Previous studies, however, show that fleshy macroalgae exhibit a broad variety of responses to CO2 enrichment and the underlying mechanisms are largely unknown. This physiological study compared the responses of a CCM species (Lomentaria australis) with a non-CCM species (Craspedocarpus ramentaceus) to CO2 enrichment with regards to growth, net photosynthesis, and biochemistry. Contrary to expectations, there was no enrichment effect for the non-CCM species, whereas the CCM species had a twofold greater growth rate, likely driven by a downregulation of the energetically costly CCM(s). This saved energy was invested into new growth rather than storage lipids and fatty acids. In addition, we conducted a comprehensive literature synthesis to examine the extent to which the growth and photosynthetic responses of fleshy macroalgae to elevated CO2 are related to their carbon acquisition strategies. Findings highlight that the responses of macroalgae to CO2 enrichment cannot be inferred solely from their carbon uptake strategy, and targeted physiological experiments on a wider range of species are needed to better predict responses of macroalgae to future oceanic change.

9.
Glob Chang Biol ; 24(6): 2239-2261, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29476630

RESUMEN

Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.


Asunto(s)
Evolución Biológica , Cambio Climático , Monitoreo del Ambiente/métodos , Océanos y Mares , Animales
10.
PLoS One ; 12(11): e0188389, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176815

RESUMEN

The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (ß), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, ß, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, ß, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth.


Asunto(s)
Compuestos de Amonio/metabolismo , Fotosíntesis , Ulva/crecimiento & desarrollo , Ulva/metabolismo , Carbono/metabolismo , Carbonatos/análisis , Clorofila/metabolismo , Concentración de Iones de Hidrógeno , Luz , Nitrógeno/metabolismo , Fotosíntesis/efectos de la radiación , Agua de Mar , Ulva/efectos de la radiación
11.
PLoS One ; 10(10): e0140394, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26469945

RESUMEN

Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily [Formula: see text] (daytime pH = 8.45, night-time pH = 7.65) and daily [Formula: see text] (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.


Asunto(s)
Ciclo del Carbono , Océanos y Mares , Phaeophyceae/crecimiento & desarrollo , Fitoplancton/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Concentración de Iones de Hidrógeno , Phaeophyceae/metabolismo , Fitoplancton/metabolismo
12.
Anal Chem ; 87(15): 7515-8, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26148196

RESUMEN

Quantitative analysis of the carbonate species within clinical and environmental samples is highly critical to the advancement of accurate environmental monitoring, disease screening, and personalized medicine. Herein we report the first example of carbonate detection using ultrasensitive ion selective electrodes (ISEs). The low detection limit (LDL) of these electrodes was at least 4 orders of magnitude lower than the best currently existing carbonate sensors. This was achieved by a simple alteration of the sensor's conditioning protocol. This resulted in the reduction of ion fluxes across the membrane interface consequently lowering the LDL to picomolar levels. The proposed ISEs exhibited near-Nernstian potentiometric responses to carbonate ions with a detection limit of 80 pmol L(-1) (5 ppt) and was utilized for direct determination of carbonate in seawater. Moreover, the new methodology has produced electrodes with excellent reproducibility, robustness, and durability. It is anticipated that this approach may form the basis for the development of highly sensitive and robust ion selective electrodes capable of in situ measurements.

13.
PLoS One ; 9(5): e97235, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24824089

RESUMEN

Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion) boundary layer (DBL), formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 'ambient' and 7.65 a worst case 'ocean acidification' scenario projected for 2100), each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick). Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface) maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05) was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3) responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.


Asunto(s)
Arrecifes de Coral , Hidrodinámica , Rhodophyta/crecimiento & desarrollo , Agua de Mar/química , Movimientos del Agua , Análisis de Varianza , Concentración de Iones de Hidrógeno , Modelos Biológicos , Nueva Zelanda , Océano Pacífico
14.
Proc Biol Sci ; 280(1772): 20132201, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24107535

RESUMEN

Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH-based for the first time on pH time-series measurements within a kelp forest-would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but δ(13)C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.


Asunto(s)
Fotosíntesis , Rhodophyta/crecimiento & desarrollo , Rhodophyta/metabolismo , Agua de Mar/química , Calcio/metabolismo , Carbonatos/metabolismo , Cambio Climático , Concentración de Iones de Hidrógeno , Nueva Zelanda , Consumo de Oxígeno , Factores de Tiempo
15.
J Phycol ; 48(1): 137-44, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27009658

RESUMEN

Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2 . This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 (-) increase; CO3 (2-) decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3 (-) ]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2 , HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 (-) increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 (-) uptake, and so HCO3 (-) -using macroalgae may benefit in future seawater with elevated CO2 .

16.
Glob Chang Biol ; 18(10): 3004-3014, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28741835

RESUMEN

Nitrogen fixation by diazotrophic cyanobacteria is a critical source of new nitrogen to the oligotrophic surface ocean. Research to date indicates that some diazotroph groups may increase nitrogen fixation under elevated pCO2 . To test this in natural plankton communities, four manipulation experiments were carried out during two voyages in the South Pacific (30-35o S). High CO2 treatments, produced using 750 ppmv CO2 to adjust pH to 0.2 below ambient, and 'Greenhouse' treatments (0.2 below ambient pH and ambient temperature +3 °C), were compared with Controls in trace metal clean deckboard incubations in triplicate. No significant change was observed in nitrogen fixation in either the High CO2 or Greenhouse treatments over 5 day incubations. qPCR measurements and optical microscopy determined that the diazotroph community was dominated by Group A unicellular cyanobacteria (UCYN-A), which may account for the difference in response of nitrogen fixation under elevated CO2 to that reported previously for Trichodesmium. This may reflect physiological differences, in that the greater cell surface area:volume of UCYN-A and its lack of metabolic pathways involved in carbon fixation may confer no benefit under elevated CO2 . However, multiple environmental controls may also be a factor, with the low dissolved iron concentrations in oligotrophic surface waters limiting the response to elevated CO2 . If nitrogen fixation by UCYN-A is not stimulated by elevated pCO2 , then future increases in CO2 and warming may alter the regional distribution and dominance of different diazotroph groups, with implications for dissolved iron availability and new nitrogen supply in oligotrophic regions.

17.
Talanta ; 71(3): 1180-5, 2007 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-19071430

RESUMEN

Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...