Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 8: 602216, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330433

RESUMEN

Melatonin (MT) has been recently considered an excellent candidate for the treatment of sleep disorders, neural injuries, and neurological diseases. To better investigate the actions of MT in various brain functions, real-time detection of MT concentrations in specific brain regions is much desired. Previously, we have demonstrated detection of exogenously administered MT in anesthetized mouse brain using square wave voltammetry (SWV). Here, for the first time, we show successful detection of exogenous MT in the brain using fast scan cyclic voltammetry (FSCV) on electrochemically pre-activated carbon fiber microelectrodes (CFEs). In vitro evaluation showed the highest sensitivity (28.1 nA/µM) and lowest detection limit (20.2 ± 4.8 nM) ever reported for MT detection at carbon surface. Additionally, an extensive CFE stability and fouling assessment demonstrated that a prolonged CFE pre-conditioning stabilizes the background, in vitro and in vivo, and provides consistent CFE sensitivity over time even in the presence of a high MT concentration. Finally, the stable in vivo background, with minimized CFE fouling, allows us to achieve a drift-free FSCV detection of exogenous administered MT in mouse brain over a period of 3 min, which is significantly longer than the duration limit (usually < 90 s) for traditional in vivo FSCV acquisition. The MT concentration and dynamics measured by FSCV are in good agreement with SWV, while microdialysis further validated the concentration range. These results demonstrated reliable MT detection using FSCV that has the potential to monitor MT in the brain over long periods of time.

2.
Analyst ; 145(7): 2612-2620, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32073100

RESUMEN

Melatonin (MT) is an important electroactive hormone that regulates different physiological actions in the brain, ranging from circadian clock to neurodegeneration. An impressive number of publications have highlighted the effectiveness of MT treatments in different types of sleep and neurological disorders, including Alzheimer's and Parkinson's disease. The ability to detect MT in different regions of the brain would provide further insights into the physiological roles and therapeutic effects of MT. While multiple electrochemical methods have been used to detect MT in biological samples, monitoring MT in the brain of live animals has not been demonstrated. Here, we optimized a square wave voltammetry (SWV) electroanalytical method to evaluate the MT detection performance at CFEs in vitro and in vivo. SWV was able to sensitively detect the MT oxidation peak at 0.7 V, and discriminate MT from most common interferents in vitro. More importantly, using the optimized SWV, CFEs successfully detected and reliably quantified MT concentrations in the visual cortex of anesthetized mice after intraperitoneal injections of different MT doses, offering stable MT signals for up to 40 minutes. To the best of our knowledge, this is the first electrochemical measurement of exogenously administered MT in vivo. This electrochemical MT sensing technique will provide a powerful tool for further understanding MT's action in the brain.


Asunto(s)
Encéfalo/metabolismo , Técnicas Electroquímicas/métodos , Melatonina/análisis , Animales , Carbono/química , Electrodos , Inyecciones Intraperitoneales , Masculino , Melatonina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...