Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nanosci Au ; 3(6): 491-499, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38144702

RESUMEN

Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (ß-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-n-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe2P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.

2.
Analyst ; 148(19): 4905, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37675781

RESUMEN

Correction for 'Voltammetric pH sensor based on electrochemically modified pseudo-graphite' by Haoyu Zhu et al., Analyst, 2020, 145, 7252-7259, https://doi.org/10.1039/D0AN01405B.

3.
Nanotechnology ; 32(3): 035202, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33089832

RESUMEN

The electrical and optoelectronic properties of nanometer-sized ZnO structures are highly influenced by its native point defects. Understanding and controlling these defects are essential for the development of high-performance ZnO-based devices. Here, an electrical device consisting of a polycrystalline ZnO-coated silica nanospring was fabricated and used to characterize the electrical and photoconductive properties of the ZnO layer using near-UV (405 nm) and sub-bandgap (532 and 633 nm) excitation sources. We observe a photocurrent response with all three wavelengths and notably with 532 nm green illumination, which is the energy associated with deep oxygen vacancies. The polycrystalline ZnO-coated silica nanospring exhibits a high responsivity of 1740 A W-1 with the 405 nm excitation source. Physical models are presented to describe the photocurrent rise and decay behavior of each excitation source where we suggest that the rise and decay characteristics are highly dependent on the energy of the excitation source and the trapping of electrons and holes in intermediate defect levels in the bandgap. The energy levels of the trap depths were determined from the photoconductive decay data and are matched to the reported energy levels of singly and doubly ionized oxygen vacancies. A phenomenological model to describe the dependence of the saturation photocurrent on excitation intensity is presented in order to understand the characteristics of the observed breaks in the slopes of the saturation photocurrent versus excitation intensity profile.

4.
Nanomaterials (Basel) ; 10(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291493

RESUMEN

Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports the conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures.

5.
Analyst ; 145(22): 7252-7259, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164011

RESUMEN

A nanocrystalline graphite-like amorphous carbon (graphite from the University of Idaho thermolyzed asphalt reaction, GUITAR) shares morphological features with classical graphites, including basal and edge planes (BP, EP). However, unlike graphites and other sp2-hybridized carbons, GUITAR has fast heterogenous electron transfer (HET) across its basal planes, and resistance to corrosion similar to sp3-C and boron-doped diamond electrodes. In this contribution, quinoid modified BP-GUITAR (q-GUITAR) is examined as a sensor for pH determination. This modification is performed by applying 2.0 V (vs. Ag/AgCl) for 150 seconds followed by 15 cyclic voltammetric scans from -0.7 to 1.0 V at 50 mV s-1 in 1.0 M H2SO4. The quinoid surface coverage of q-GUITAR is 1.35 × 10-9 mol cm-2, as measured by cyclic voltammetry. X-ray photoelectron spectroscopy analysis also confirms the high surface coverage. The quinoid surface concentration ranks highest in literature when compared with other basal plane graphitic materials. This yields a sensor that responds through a square wave voltammetric reduction peak shift of 63.3 mV per pH over a pH range from 0 to 11. The response on q-GUITAR is stable for >20 measurements and no surface re-activation is required between the measurements. The common interferents, Na+, K+ and dissolved oxygen, have no effect on the response of the q-GUITAR-based pH sensor.

6.
ACS Omega ; 5(35): 22440-22448, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923802

RESUMEN

Nanowires and nanorods of magnetite (Fe3O4) are of interest due to their varied biological applications but most importantly for their use as magnetic resonance imaging contrast agents. One-dimensional (1D) structures of magnetite, however, are more challenging to synthesize because the surface energy favors the formation of isotropic structures. Synthetic protocols can be dichotomous, producing either the 1D structure or the magnetite phase but not both. Here, superparamagnetic Fe3O4 nanorods were prepared in solution by the reduction of iron oxy-hydroxide (ß-FeOOH) nanoneedles with hydrazine (N2H4). The amount of hydrazine and the reaction time affected the phase and morphology of the resulting iron oxide nanoparticles. One-dimensional nanostructures of Fe3O4 could be produced consistently from various aspect ratios of ß-FeOOH nanoneedles, although the length of the template was not retained. Fe3O4 nanorods were characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and SQUID magnetometry.

7.
ACS Omega ; 5(23): 14104-14110, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32566877

RESUMEN

We report a solution-based synthetic method to produce shape-tunable iron pyrite (FeS2) nanocrystals using iron oxy-hydroxide (ß-FeOOH) as a precursor and their application for selective reduction of functionalized nitroarenes to aniline derivatives with formic acid-triethylamine (HCOOH-Et3N) as a hydrogen donor system.

8.
Colloids Surf B Biointerfaces ; 189: 110790, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32028130

RESUMEN

Low-cost, voltage-driven biocatalytic designs for rapid drug metabolism assay, chemical toxicity screening, and pollutant biosensing represent considerable significance for pharmaceutical, biomedical, and environmental applications. In this study, we have designed biointerfaces of human liver microsomes with various roughened, high-purity graphite disk electrodes to study electrochemical and electrocatalytic properties. Successful spectral and microscopic characterizations, direct bioelectronic communication, direct electron-transfer rates from the electrode to liver microsomal enzymes, microsomal heme-enzyme specific oxygen reduction currents, and voltage-driven diclofenac hydroxylation (chosen as the probe reaction) are presented.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Técnicas Electroquímicas , Grafito/metabolismo , Microsomas Hepáticos/metabolismo , Sistema Enzimático del Citocromo P-450/química , Electrodos , Grafito/química , Humanos , Microsomas Hepáticos/química , Tamaño de la Partícula , Propiedades de Superficie
9.
Materials (Basel) ; 12(22)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752289

RESUMEN

A graphitic carbon, referred to as graphite from the University of Idaho thermolyzed asphalt reaction (GUITAR), was coated in silica nanosprings and silicon substrates via the pyrolysis of commercial roofing tar at 800 °C in an inert atmosphere. Scanning electron microscopy and transmission electron microscopy images indicate that GUITAR is an agglomeration of carbon nanospheres formed by the accretion of graphitic flakes into a ~100 nm layer. Raman spectroscopic analyses, in conjunction with scanning electron microscopy and transmission electron microscopy, indicate that GUITAR has a nanocrystalline structure consisting of ~1-5 nm graphitic flakes interconnected by amorphous sp3 bonded carbon. The electrical resistivities of 11 single GUITAR-coated nanospring devices were measured over a temperature range of 10-80 °C. The average resistivity of all 11 devices at 20 °C was 4.3 ± 1.3 × 10-3 Ω m. The GUITAR coated nanospring devices exhibited an average negative temperature coefficient of resistivity at 20 °C of -0.0017 ± 0.00044 °C-1, which is consistent with the properties of nanocrystalline graphite.

10.
Nanotechnology ; 30(23): 234006, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30780140

RESUMEN

The effects of thermal annealing on the electrical properties of randomly oriented ZnO-coated nanospring ensembles were extensively investigated through AC impedance spectroscopy. Annealing the nanospring mats for an hour at 873 K in air showed significant change in ZnO morphology, reduced electrical conductivity due to the presence of grain boundaries, decreased apparent donor concentration, and faster decay of sub-band gap photocurrent. The role of the nanospring-nanospring junctions in the conduction of carriers in the ensemble was also examined, as well as evaluation of their responsiveness to thermal and optical stimulations. This work identifies the effects of heat treatment in the presence of air on the electrical properties of the nanospring ensembles, which are related to the mesoscopic morphology and interconnect within the ensemble and the properties of the ZnO coating.

11.
Materials (Basel) ; 12(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669340

RESUMEN

The effect of UV illumination on the room temperature electrical detection of ammonium nitrate vapor was examined. The sensor consists of a self-assembled ensemble of silica nanosprings coated with zinc oxide. UV illumination mitigates the baseline drift of the resistance relative to operation under dark conditions. It also lowers the baseline resistance of the sensor by 25% compared to dark conditions. At high ammonium nitrate concentrations (120 ppm), the recovery time after exposure is virtually identical with or without UV illumination. At low ammonium nitrate concentrations (20 ppm), UV illumination assists with refreshing of the sensor by stimulating analyte desorption, thereby enabling the sensor to return to its baseline resistance. Under dark conditions and low ammonium nitrate concentrations, residual analyte builds up with each exposure, which inhibits the sensor from returning to its original baseline resistance and subsequently impedes sensing due to permanent occupation of absorption sites.

12.
ACS Appl Bio Mater ; 2(5): 2229-2236, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35030661

RESUMEN

Electrode materials play an important role on the electrocatalytic properties of immobilized biocatalysts. In this regard, achieving direct electronic communication between the electrode and redox sites of biocatalysts eliminates the need for additional electron transfer mediators for biocatalytic applications in fuel cells and other electrochemical energy devices. In order to increase electrocatalytic currents and power in fuel cells and metal-air batteries, conductive carbon-nanostructure-modified large surface area electrodes are quite useful. Among various electrode materials, freestanding buckypapers made from carbon nanotubes have gained significance as they do not require a solid support material and thus facilitate miniaturization. In this article, we present the effect of buckypaper (BP) thickness on the electrocatalytic properties of a bilirubin oxidase (BOD) enzyme. In this study, we prepared BPs of varying thicknesses ranging from 87 µm, the minimum thickness for suitable handling with a good stability in aqueous experiments, to 380 µm. BOD was adsorbed overnight onto the BPs, mostly via hydrophobic and π-π interactions since the nanotubes used were not chemically functionalized. Furthermore, intercalation of the BOD molecules onto the nanotubes' multicylindrical network is feasible. We determined that the lower range BP thickness (<220 µm) exhibited better sigmoidal shaped electrocatalytic currents than the higher BP-thickness-based BOD biofilms with larger capacitive currents. An oxygen reduction current density of up to 3 mA cm-2 is achieved without the use of any redox mediators or tedious electrode modifications. Using the 87 µm thick BP as the representative case, we were able to obtain distinguishable peaks for all Cu sites of BOD and assign their types, T1, T2, and T3, based on the peak-width at half-maximum in anaerobic cyclic voltammograms. Our peak assignment is further supported by the appearance of dual electrocatalytic oxygen reduction waves at a higher scan rate region (>10 mV s-1) in oxygen-saturated buffer, which is identified to be driven by an ∼3.5 times faster electron transfer rate from the buckypaper to the T2/T3 center than the T1 Cu site. Findings from this study are significant for designing enzyme electrocatalytic systems and biosensors in general and fuel cells and aerobic energy storage devices in particular, where the cathodic oxygen reduction current is often inadequate.

13.
ACS Sens ; 3(11): 2367-2374, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30350946

RESUMEN

Ammonium nitrate is an explosive agent that has a very low vapor pressure, which makes airborne detection very challenging. Detection of ammonium nitrate vapor has been achieved by using silica nanospring mats coated with a thin semiconducting layer of zinc oxide. The sensor was operated at room temperature and under ambient conditions in air. Lock-in amplification was employed to measure the change in electrical resistance of the sensor upon exposure to the said target gas analyte. The sensor showed fast detection, only taking ∼15 s to reach its peak response, and exhibited a moderate recovery time of approximately 0.5 min/20 ppm for <40 ppm exposures. A comparison between the ZnO coated nanospring sensor and ZnO thin film sensor demonstrated that the nanospring sensor has superior sensitivity and responsiveness over the thin film sensor. A percolation-based model is proposed to explain the greater sensitivity at low analyte concentrations of the ZnO-nanospring sensor, as compared to a ZnO thin film sensor.


Asunto(s)
Sustancias Explosivas/análisis , Nanoestructuras/química , Nitratos/análisis , Óxido de Zinc/química , Adsorción , Impedancia Eléctrica , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Sustancias Explosivas/química , Límite de Detección , Nitratos/química , Dióxido de Silicio/química , Temperatura
14.
Analyst ; 143(12): 2876-2882, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29790506

RESUMEN

The objective of this article is to demonstrate the electrode geometric area-based scalability of pyrenyl-carbon nanostructure modification for enzyme electrocatalysis and fuel cell power output using hydrogenase anode and bilirubin oxidase cathode as the model system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Carbono/química , Electrodos , Nanoestructuras/química , Hidrogenasas/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química
15.
ACS Appl Mater Interfaces ; 9(40): 34641-34649, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28921951

RESUMEN

Enzyme microreactors are important tools of miniaturized analytics and have promising applications in continuous biomanufacturing. A fundamental problem of their design is that plain microchannels without extensive static internals, or packings, offer limited exposed surface area for immobilizing the enzyme. To boost the immobilization in a manner broadly applicable to enzymes, we coated borosilicate microchannels with silica nanosprings and attached the enzyme, sucrose phosphorylase, via a silica-binding module genetically fused to it. We showed with confocal fluorescence microscopy that the enzyme was able to penetrate the ∼70 µm-thick nanospring layer and became distributed uniformly in it. Compared with the plain surface, the activity of immobilized enzyme was enhanced 4.5-fold upon surface coating with nanosprings and further increased up to 10-fold by modifying the surface of the nanosprings with sulfonate groups. Operational stability during continuous-flow biocatalytic synthesis of α-glucose 1-phosphate was improved by a factor of 11 when the microreactor coated with nanosprings was used. More than 85% of the initial conversion rate was retained after 840 reactor cycles performed with a single loading of enzyme. By varying the substrate flow rate, the microreactor performance was conveniently switched between steady states of quantitative product yield (50 mM) and optimum productivity (19 mM min-1) at a lower product yield of 40%. Surface coating with silica nanosprings thus extends the possibilities for enzyme immobilization in microchannels. It effectively boosts the biocatalytic function of a microstructured reactor limited otherwise by the solid surface available for immobilizing the enzyme.


Asunto(s)
Microfluídica , Biocatálisis , Reactores Biológicos , Estabilidad de Enzimas , Enzimas Inmovilizadas , Nanoestructuras , Dióxido de Silicio
16.
Sensors (Basel) ; 15(6): 13110-20, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26053754

RESUMEN

A significant improvement of the response characteristics of a redox chemical gas sensor (chemiresistor) constructed with a single ZnO coated silica nanospring has been achieved with the technique of lock-in signal amplification. The comparison of DC and analog lock-in amplifier (LIA) AC measurements of the electrical sensor response to toluene vapor, at the ppm level, has been conducted. When operated in the DC detection mode, the sensor exhibits a relatively high sensitivity to the analyte vapor, as well as a low detection limit at the 10 ppm level. However, at 10 ppm the signal-to-noise ratio is 5 dB, which is less than desirable. When operated in the analog LIA mode, the signal-to-noise ratio at 10 ppm increases by 30 dB and extends the detection limit to the ppb range.

17.
Nanotechnology ; 25(47): 475501, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25380181

RESUMEN

A redox chemical sensor (chemiresistor) was constructed with a single ZnO coated silica nanospring. The chemiresistor response to toluene vapor as a function of the sensor temperature (T(NS)) and vapor temperature (T(V)) was measured and analyzed. The maximum sensitivity of the single ZnO coated nanospring device occurred at the sensor temperature (T(NS)) of 310 °C and at the vapor temperature (T(V)) of 250 °C. The characteristics of the electrical response of a single ZnO coated nanospring device were compared to those of a ZnO thin film. The single ZnO nanospring sensor was less responsive to small changes in toluene concentration relative to the ZnO thin film, but has a lower ultimate detection level. A computational model to simulate an electrical response of the single nanospring sensor and the thin film indicated that the differences between their response characteristics is due to the geometry of the nanospring and corresponding periodic boundary conditions imposed by the nanospring geometry, which is absent in a thin film.

18.
ACS Appl Mater Interfaces ; 6(16): 13355-66, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25019614

RESUMEN

Self-assembled monolayers (SAMs) of thiols of L-cysteine, 6-mercaptohexanol, 4-mercaptobenzoic acid, DL-thioctic acid and 11-(1-pyrenyl)-1-undecathiol, which have been selected for their propensity to interact with vaporized explosives, have been attached from solution onto gold decorated ZnO-coated nanosprings. X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS) have been used to investigate the surface electronic structure of the SAMs coated nanosprings. On the basis of XPS analysis, it has been determined that the packing densities of L-cysteine, 6-mercaptohexanol, 4-mercaptobenzoic acid, DL-thioctic acid and 11-(1-pyrenyl)-1-undecathiol on gold (zinc oxide) are 5.42 × 10(14) (2.83 × 10(14)), 3.26 × 10(14) (2.54 × 10(14)), 9.50 × 10(13), 2.55 × 10(14) (1.12 × 10(14)), and 5.23 × 10(13) molecules/cm(2), respectively. A single S 2p core level doublet is observed for 4-mercaptobenzoic acid and 11-(1-pyrenyl)-1-undecathiol, which is assigned to the S-Au bond. The S 2p core level for L-cysteine, 6-mercaptohexanol, and DL-thioctic acid consist of two doublets, where one is S-Au bond and the other is the S-Zn bond. Analysis of the C/S ratios agrees well with the stoichiometry of the respective thiols. UPS analysis shows that the hybridization of S 3p states and Au d-bands produces antibonding and bonding states, above and below the Au d-bands, which is characteristic of molecular chemisorption on Au nanoparticles. Gas sensors were constructed with thiolated nanosprings and their responsiveness to ammonium nitrate at 100-150 °C was tested. Nanosprings sensors functionalized with 4-mercaptobenzoic acid and 6-mercaptohexanol showed the strongest responses by a factor of 4 to 5 relative to the less responsive thiols. The response to ammonium nitrate can be correlated to the packing density and ordering of the SAMs.

19.
Nano Lett ; 12(10): 5181-5, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22924895

RESUMEN

The photocurrent of individual gallium nitride (GaN) nanowires decorated with Au nanoparticles as function of the wavelength of light (405 nm (blue), 532 nm (green), and 632.8 nm (red)) and nanowire diameter (80 to 400 nm) is reported. The photocurrent scales with photon energy but oscillates with nanowire diameter. The oscillations are described in terms of the scattering of surface plasmon polaritons into allowed transverse magnetic electromagnetic modes of the nanowire that have maximum intensities in the undepleted region of the nanowire. These oscillations do not occur below a nanowire diameter of ~200 nm due to the depletion layer formed at the Au-GaN interface, which completely depletes the nanowire, that is, there is an insufficient density of carriers that can be excited into the conduction band. On the basis of estimations of the depletion depth and solutions of the Helmholtz equation, the maxima in the photocurrent for d > 200 nm are assigned to the two lowest azimuthally symmetric transverse magnetic eigenmodes: (m = 0, n = 1) and (m = 0, n = 2), which have maximum electric field intensities within the undepleted region of the GaN nanowire. The outcome of this work could have far reaching implications on the development of nanophotonics.

20.
Biotechnol Prog ; 26(6): 1597-605, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20661927

RESUMEN

The use of silicon dioxide (SiO(2) ) nanosprings as supports for immobilized enzymes in a continuous microreactor is described. A nanospring mat (2.2 cm(2) × 60 µm thick) was functionalized with γ-aminopropyltriethoxysilane, then treated with N-succinimidyl-3-(2-pyridyldithio)-propionate (SPDP) and dithiothreitol (DTT) to produce surface thiol (--SH) groups. SPDP-modified ß-galactosidase from Aspergillus oryzae was immobilized on the thiolated nanosprings by reversible disulfide linkages. The enzyme-coated nanospring mat was placed into a 175-µm high microchannel, with the mat partially occluding the channel. The kinetics and steady-state conversion of hydrolysis of o-nitrophenyl ß-D-galactosylpyranoside at various substrate flow rates and concentrations were measured. Substantial flow was observed through the nanosprings, for which the Darcy permeability κ ≈ 3 × 10(-6) cm(2) . A simple, one-parameter numerical model coupling Navier-Stokes and Darcy flow with a pseudo-first-order reaction was used to fit the experimental data. Simulated reactor performance was sensitive to changes in κ and the height of the nanospring mat. Permeabilities lower than 10(-8) cm(2) practically eliminated convective flow through the nanosprings, and substantially decreased conversion. Increasing the height of the mat increased conversion in simulations, but requires more enzymes and could cause sealing issues if grown above channel walls. Preliminary results indicate that in situ regeneration by reduction with DTT and incubation with SPDP-modified ß-galactosidase is possible. Nanosprings provide high solvent-accessible surface area with good permeability and mechanical stability, can be patterned into existing microdevices, and are amenable to immobilization of biomolecules. Nanosprings offer a novel and useful support for enzymatic microreactors, biosensors, and lab-on-chip devices.


Asunto(s)
Aspergillus oryzae/enzimología , Técnicas Biosensibles , Enzimas Inmovilizadas/metabolismo , Nanoestructuras/química , Dióxido de Silicio/química , beta-Galactosidasa/metabolismo , Enzimas Inmovilizadas/química , Propiedades de Superficie , beta-Galactosidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA