Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2304934120, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147560

RESUMEN

Pangenomes exhibit remarkable variability in many prokaryotic species, much of which is maintained through the processes of horizontal gene transfer and gene loss. Repeated acquisitions of near-identical homologs can easily be observed across pangenomes, leading to the question of whether these parallel events potentiate similar evolutionary trajectories, or whether the remarkably different genetic backgrounds of the recipients mean that postacquisition evolutionary trajectories end up being quite different. In this study, we present a machine learning method that predicts the presence or absence of genes in the Escherichia coli pangenome based on complex patterns of the presence or absence of other accessory genes within a genome. Our analysis leverages the repeated transfer of genes through the E. coli pangenome to observe patterns of repeated evolution following similar events. We find that the presence or absence of a substantial set of genes is highly predictable from other genes alone, indicating that selection potentiates and maintains gene-gene co-occurrence and avoidance relationships deterministically over long-term bacterial evolution and is robust to differences in host evolutionary history. We propose that at least part of the pangenome can be understood as a set of genes with relationships that govern their likely cohabitants, analogous to an ecosystem's set of interacting organisms. Our findings indicate that intragenomic gene fitness effects may be key drivers of prokaryotic evolution, influencing the repeated emergence of complex gene-gene relationships across the pangenome.


Asunto(s)
Escherichia coli , Genoma Bacteriano , Bacterias/genética , Escherichia coli/genética , Evolución Molecular , Genoma Bacteriano/genética , Filogenia , Células Procariotas
2.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36288801

RESUMEN

Understanding adaptation to the local environment is a central tenet and a major focus of evolutionary biology. But this is only part of the adaptionist story. In addition to the external environment, one of the main drivers of genome composition is genetic background. In this perspective, I argue that there is a growing body of evidence that intra-genomic selective pressures play a significant part in the composition of prokaryotic genomes and play a significant role in the origin, maintenance and structuring of prokaryotic pangenomes.


Asunto(s)
Ecosistema , Evolución Molecular , Filogenia , Células Procariotas , Evolución Biológica
3.
Nat Microbiol ; 7(10): 1510-1511, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36097169
4.
Curr Opin Microbiol ; 66: 73-78, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104691

RESUMEN

Prokaryote pangenomes are influenced heavily by environmental factors and the opportunity for gene gain and loss events. As the field of pangenome analysis has expanded, so has the need to fully understand the complexity of how eco-evolutionary dynamics shape pangenomes. Here, we describe current models of pangenome evolution and discuss their suitability and accuracy. We suggest that pangenomes are dynamic entities under constant flux, highlighting the influence of two-way interactions between pangenome and environment. New classifications of core and accessory genes are also considered, underscoring the need for continuous evaluation of nomenclature in a fast-moving field. We conclude that future models of pangenome evolution should incorporate eco-evolutionary dynamics to fully encompass their dynamic, changeable nature.


Asunto(s)
Células Procariotas
6.
Microb Genom ; 7(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499026

RESUMEN

The pangenome contains all genes encoded by a species, with the core genome present in all strains and the accessory genome in only a subset. Coincident gene relationships are expected within the accessory genome, where the presence or absence of one gene is influenced by the presence or absence of another. Here, we analysed the accessory genome of an Escherichia coli pangenome consisting of 400 genomes from 20 sequence types to identify genes that display significant co-occurrence or avoidance patterns with one another. We present a complex network of genes that are either found together or that avoid one another more often than would be expected by chance, and show that these relationships vary by lineage. We demonstrate that genes co-occur by function, and that several highly connected gene relationships are linked to mobile genetic elements. We find that genes are more likely to co-occur with, rather than avoid, another gene in the accessory genome. This work furthers our understanding of the dynamic nature of prokaryote pangenomes and implicates both function and mobility as drivers of gene relationships.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano , Elementos Transponibles de ADN , Infecciones por Escherichia coli/microbiología , Evolución Molecular , Genes Bacterianos , Filogenia , Virulencia/genética
7.
Mol Biol Evol ; 38(9): 3697-3708, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33963386

RESUMEN

A pangenome is the complete set of genes (core and accessory) present in a phylogenetic clade. We hypothesize that a pangenome's accessory gene content is structured and maintained by selection. To test this hypothesis, we interrogated the genomes of 40 Pseudomonas species for statistically significant coincident (i.e., co-occurring/avoiding) gene patterns. We found that 86.7% of common accessory genes are involved in ≥1 coincident relationship. Further, genes that co-occur and/or avoid each other-but are not vertically inherited-are more likely to share functional categories, are more likely to be simultaneously transcribed, and are more likely to produce interacting proteins, than would be expected by chance. These results are not due to coincident genes being adjacent to one another on the chromosome. Together, these findings suggest that the accessory genome is structured into sets of genes that function together within a given strain. Given the similarity of the Pseudomonas pangenome with open pangenomes of other prokaryotic species, we speculate that these results are generalizable.


Asunto(s)
Genoma , Células Procariotas , Filogenia
8.
Trends Microbiol ; 29(6): 493-503, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33423895

RESUMEN

Analyses of multiple whole-genome sequences from the same species have revealed that differences in gene content can be substantial, particularly in prokaryotes. Such variation has led to the recognition of pangenomes, the complete set of genes present in a species - consisting of core genes, present in all individuals, and accessory genes whose presence is variable. Questions now arise about how pangenomes originate and evolve. We describe how gene content variation can arise as a result of the combination of several processes, including random drift, selection, gain/loss balance, and the influence of ecological and epistatic interactions. We believe that identifying the contributions of these processes to pangenomes will need novel theoretical approaches and empirical data.


Asunto(s)
Bacterias/genética , Evolución Molecular , Aptitud Genética , Genoma Bacteriano , Filogenia
9.
Front Microbiol ; 11: 1569, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849327

RESUMEN

Horizontal gene transfer (HGT) is one of the most important processes in prokaryote evolution. The sharing of DNA can spread neutral or beneficial genes, as well as genetic parasites across populations and communities, creating a large proportion of the variability acted on by natural selection. Here, we highlight the role of HGT in enhancing the opportunities for conflict and cooperation within and between prokaryote genomes. We discuss how horizontally acquired genes can cooperate or conflict both with each other and with a recipient genome, resulting in signature patterns of gene co-occurrence, avoidance, and dependence. We then describe how interactions involving horizontally transferred genes may influence cooperation and conflict at higher levels (populations, communities, and symbioses). Finally, we consider the benefits and drawbacks of HGT for prokaryotes and its fundamental role in understanding conflict and cooperation from the gene-gene to the microbiome level.

10.
Genes (Basel) ; 10(9)2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466252

RESUMEN

The formation of new genes by combining parts of existing genes is an important evolutionary process. Remodelled genes, which we call composites, have been investigated in many species, however, their distribution across all of life is still unknown. We set out to examine the extent to which genomes from cells and mobile genetic elements contain composite genes. We identify composite genes as those that show partial homology to at least two unrelated component genes. In order to identify composite and component genes, we constructed sequence similarity networks (SSNs) of more than one million genes from all three domains of life, as well as viruses and plasmids. We identified non-transitive triplets of nodes in this network and explored the homology relationships in these triplets to see if the middle nodes were indeed composite genes. In total, we identified 221,043 (18.57%) composites genes, which were distributed across all genomic and functional categories. In particular, the presence of composite genes is statistically more likely in eukaryotes than prokaryotes.


Asunto(s)
Evolución Molecular , Genoma , Modelos Genéticos , Animales , Archaea/genética , Bacterias/genética , Humanos , Secuencias Repetitivas Esparcidas , Plantas/genética , Homología de Secuencia de Ácido Nucleico
11.
Genome Biol Evol ; 11(9): 2678-2690, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400206

RESUMEN

Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.


Asunto(s)
Evolución Molecular , Fusión Génica , Duplicaciones Segmentarias en el Genoma , Animales , Humanos , Ratones , Motivos de Nucleótidos , Filogenia , Primates/genética , Biosíntesis de Proteínas , Sitios de Empalme de ARN , Recombinación Genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
BMC Biol ; 16(1): 30, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534719

RESUMEN

BACKGROUND: Eukaryotes evolved from the symbiotic association of at least two prokaryotic partners, and a good deal is known about the timings, mechanisms, and dynamics of these evolutionary steps. Recently, it was shown that a new class of nuclear genes, symbiogenetic genes (S-genes), was formed concomitant with endosymbiosis and the subsequent evolution of eukaryotic photosynthetic lineages. Understanding their origins and contributions to eukaryogenesis would provide insights into the ways in which cellular complexity has evolved. RESULTS: Here, we show that chimeric nuclear genes (S-genes), built from prokaryotic domains, are critical for explaining the leap forward in cellular complexity achieved during eukaryogenesis. A total of 282 S-gene families contributed solutions to many of the challenges faced by early eukaryotes, including enhancing the informational machinery, processing spliceosomal introns, tackling genotoxicity within the cell, and ensuring functional protein interactions in a larger, more compartmentalized cell. For hundreds of S-genes, we confirmed the origins of their components (bacterial, archaeal, or generally prokaryotic) by maximum likelihood phylogenies. Remarkably, Bacteria contributed nine-fold more S-genes than Archaea, including a two-fold greater contribution to informational functions. Therefore, there is an additional, large bacterial contribution to the evolution of eukaryotes, implying that fundamental eukaryotic properties do not strictly follow the traditional informational/operational divide for archaeal/bacterial contributions to eukaryogenesis. CONCLUSION: This study demonstrates the extent and process through which prokaryotic fragments from bacterial and archaeal genes inherited during eukaryogenesis underly the creation of novel chimeric genes with important functions.


Asunto(s)
Quimera/genética , Quimera/metabolismo , Bases de Datos Genéticas , Células Eucariotas/fisiología , Evolución Molecular , Filogenia
13.
Mol Biol Evol ; 35(4): 899-913, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346651

RESUMEN

Extensive microbial gene flows affect how we understand virology, microbiology, medical sciences, genetic modification, and evolutionary biology. Phylogenies only provide a narrow view of these gene flows: plasmids and viruses, lacking core genes, cannot be attached to cellular life on phylogenetic trees. Yet viruses and plasmids have a major impact on cellular evolution, affecting both the gene content and the dynamics of microbial communities. Using bipartite graphs that connect up to 149,000 clusters of homologous genes with 8,217 related and unrelated genomes, we can in particular show patterns of gene sharing that do not map neatly with the organismal phylogeny. Homologous genes are recycled by lateral gene transfer, and multiple copies of homologous genes are carried by otherwise completely unrelated (and possibly nested) genomes, that is, viruses, plasmids and prokaryotes. When a homologous gene is present on at least one plasmid or virus and at least one chromosome, a process of "gene externalization," affected by a postprocessed selected functional bias, takes place, especially in Bacteria. Bipartite graphs give us a view of vertical and horizontal gene flow beyond classic taxonomy on a single very large, analytically tractable, graph that goes beyond the cellular Web of Life.


Asunto(s)
Transferencia de Gen Horizontal , Genes Microbianos , Flujo Génico , Plásmidos/genética , Virus/genética
14.
ISME J ; 12(2): 320-329, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28809850

RESUMEN

Bacterial genomes are rife with orphan biosynthetic gene clusters (BGCs) associated with secondary metabolism of unrealized natural product molecules. Often up to a tenth of the genome is predicted to code for the biosynthesis of diverse metabolites with mostly unknown structures and functions. This phenomenal diversity of BGCs coupled with their high rates of horizontal transfer raise questions about whether they are really active and beneficial, whether they are neutral and confer no advantage, or whether they are carried in genomes because they are parasitic or addictive. We previously reported that Salinispora bacteria broadly use the desferrioxamine family of siderophores for iron acquisition. Herein we describe a new and unrelated group of peptidic siderophores called salinichelins from a restricted number of Salinispora strains in which the desferrioxamine biosynthesis genes have been lost. We have reconstructed the evolutionary history of these two different siderophore families and show that the acquisition and retention of the new salinichelin siderophores co-occurs with the loss of the more ancient desferrioxamine pathway. This identical event occurred at least three times independently during the evolution of the genus. We surmise that certain BGCs may be extraneous because of their functional redundancy and demonstrate that the relative evolutionary pace of natural pathway replacement shows high selective pressure against retention of functionally superfluous gene clusters.


Asunto(s)
Genoma Bacteriano , Micromonosporaceae/genética , Familia de Multigenes , Sideróforos/metabolismo , Algoritmos , Fenómenos Fisiológicos Bacterianos , Cromatografía Líquida de Alta Presión , Minería de Datos , Análisis de Fourier , Técnicas de Transferencia de Gen , Genes Bacterianos , Hierro/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Filogenia , Metabolismo Secundario
15.
16.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133456

RESUMEN

Biological public goods are broadly shared within an ecosystem and readily available. They appear to be widespread and may have played important roles in the history of life on Earth. Of particular importance to events in the early history of life are the roles of public goods in the merging of genomes, protein domains and even cells. We suggest that public goods facilitated the origin of the eukaryotic cell, a classic major evolutionary transition. The recognition of genomic public goods challenges advocates of a direct graph view of phylogeny, and those who deny that any useful phylogenetic signal persists in modern genomes. Ecological spillovers generate public goods that provide new ecological opportunities.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Asunto(s)
Evolución Planetaria , Animales
19.
Nature ; 541(7637): 297-299, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102241
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...