Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142487

RESUMEN

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Asunto(s)
Carbón Mineral , Metano , Carbono , Gas Natural
2.
Ground Water ; 60(2): 210-224, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34617284

RESUMEN

The interactions between old abandoned wellbores of suspect well integrity with hydraulic fracturing (HF), enhanced oil recovery (EOR), or salt water disposal (SWD) operations can result in upward leakage of deep aqueous liquids into overlying aquifers. This potential for upward fluid migration is largely unquantified as monitoring abandoned wells is rarely done, and leakage may go unnoticed especially when in deeper aquifers. This study performs a proximity analysis between old abandoned wells and HF, EOR, and SWD wells, and identifies commingled old abandoned wellbores, which are those wells where groundwater may flow from one aquifer to one or more other aquifers, to identify the locations with the greatest potential for upward aqueous fluid migration at three study sites in the Western Canadian Sedimentary Basin. Our analysis indicates that at all three study sites there are several locations where HF, EOR, or SWD operations are located in close proximity to a given old abandoned well. Much of this overlap occurs in formations above typically produced hydrocarbon reservoirs but below exploited potable aquifers, otherwise known as the intermediate zone, which is often connected between abandonment plugs in old abandoned wells. Information on the intermediate zone is often lacking, and this study suggests that unanticipated alterations to groundwater flow systems within the intermediate zone may be occurring. Results indicate the need for more field-based research on the intermediate zone.


Asunto(s)
Agua Subterránea , Fracking Hidráulico , Contaminantes Químicos del Agua , Canadá , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Pozos de Agua
3.
Ground Water ; 60(1): 47-63, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34519028

RESUMEN

Large volumes of saline formation water are both produced from and injected into sedimentary basins as a by-product of oil and gas production. Despite this, the location of production and injection wells has not been studied in detail at the regional scale and the effects on deep groundwater flow patterns (i.e., below the base of groundwater protection) possibly driving fluid flow toward shallow aquifers remain uncertain. Even where injection and production volumes are equal at the basin scale, local changes in hydraulic head can occur due to the distribution of production and injection wells. In the Canadian portion of the Williston Basin, over 4.6 × 109 m3 of water has been co-produced with 5.4 × 108 m3 of oil, and over 5.5 × 109 m3 of water has been injected into the subsurface for salt water disposal or enhanced oil recovery. Despite approximately equal values of produced and injected fluids at the sedimentary basin scale over the history of development, cumulative fluid deficits and surpluses per unit area in excess of a few 100 mm are present at scales of a few 100 km2 . Fluid fluxes associated with oil and gas activities since 1950 likely exceed background groundwater fluxes in these areas. Modeled pressures capable of creating upward hydraulic gradients are predicted for the Midale Member and Mannville Group, two of the strata with the highest amounts of injection in the study area. This could lead to upward leakage of fluids if permeable pathways, such as leaky wells, are present.


Asunto(s)
Agua Subterránea , Fracking Hidráulico , Contaminantes Químicos del Agua , Canadá , Gas Natural , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Pozos de Agua
4.
Sci Total Environ ; 791: 147906, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126475

RESUMEN

Reclaimed water is becoming an increasingly important source of water in arid regions worldwide. In the City of Tucson, Arizona, reclaimed water comprises approximately 10% of the annual water supply. It is used to recharge the local aquifer, create surface flow in the Santa Cruz River, and irrigate parks, golf courses, and recreational fields. In December 2018, concentrations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) an order of magnitude higher than the EPA lifetime health advisory of 70 ppt were discovered in the city's reclaimed water system. The PFAS were also detected in the Sweetwater Recharge Facility (SRF), adjacent to the Santa Cruz River, where reclaimed water is stored in the alluvial aquifer. PFAS have gained national attention as contaminants of emerging concern because of their widespread occurrence, toxicological impact to humans, and persistence in the environment. However, relatively little is known about their fate and transport in managed aquifer recharge systems. Results from this study show that PFAS in the SRF likely originated from the city's retired wastewater treatment facility, while lower PFAS concentrations are observed in the treated wastewater provided by the city's new treatment facility. Moreover, the combined PFOS and PFOA concentrations appear to be correlated to rising and falling groundwater levels, indicating that PFAS are likely trapped in the vadose zone and transported to the alluvial aquifer during managed aquifer recharge events.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Humanos , Ríos , Agua , Contaminantes Químicos del Agua/análisis
5.
Ground Water ; 57(5): 669-677, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31183853

RESUMEN

The impacts of unconventional oil and gas production via high-volume hydraulic fracturing (HVHF) on water resources, such as water use, groundwater and surface water contamination, and disposal of produced waters, have received a great deal of attention over the past decade. Conventional oil and gas production (e.g., enhanced oil recovery [EOR]), which has been occurring for more than a century in some areas of North America, shares the same environmental concerns, but has received comparatively little attention. Here, we compare the amount of produced water versus saltwater disposal (SWD) and injection for EOR in several prolific hydrocarbon producing regions in the United States and Canada. The total volume of saline and fresh to brackish water injected into depleted oil fields and nonproductive formations is greater than the total volume of produced waters in most regions. The addition of fresh to brackish "makeup" water for EOR may account for the net gain of subsurface water. The total amount of water injected and produced for conventional oil and gas production is greater than that associated with HVHF and unconventional oil and gas production by well over a factor of 10. Reservoir pressure increases from EOR and SWD wells are low compared to injection of fluids for HVHF, however, the longer duration of injections could allow for greater solute transport distances and potential for contamination. Attention should be refocused from the subsurface environmental impacts of HVHF to the oil and gas industry as a whole.


Asunto(s)
Agua Subterránea , Fracking Hidráulico , Canadá , América del Norte , Yacimiento de Petróleo y Gas
7.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30101289

RESUMEN

Injecting CO2 into depleted oil reservoirs to extract additional crude oil is a common enhanced oil recovery (CO2-EOR) technique. However, little is known about how in situ microbial communities may be impacted by CO2 flooding, or if any permanent microbiological changes occur after flooding has ceased. Formation water was collected from an oil field that was flooded for CO2-EOR in the 1980s, including samples from areas affected by or outside of the flood region, to determine the impacts of CO2-EOR on reservoir microbial communities. Archaea, specifically methanogens, were more abundant than bacteria in all samples, while identified bacteria exhibited much greater diversity than the archaea. Microbial communities in CO2-impacted and non-impacted samples did not significantly differ (ANOSIM: Statistic R = -0.2597, significance = 0.769). However, several low abundance bacteria were found to be significantly associated with the CO2-affected group; very few of these species are known to metabolize CO2 or are associated with CO2-rich habitats. Although this study had limitations, on a broad scale, either the CO2 flood did not impact the microbial community composition of the target formation, or microbial communities in affected wells may have reverted back to pre-injection conditions over the ca. 40 years since the CO2-EOR.


Asunto(s)
Dióxido de Carbono/análisis , Microbiota , Yacimiento de Petróleo y Gas/microbiología , Industria del Petróleo y Gas/métodos , Petróleo/microbiología , Archaea/clasificación , Archaea/genética , Archaea/crecimiento & desarrollo , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biodiversidad , Microbiota/genética , Yacimiento de Petróleo y Gas/química
8.
Front Microbiol ; 7: 1535, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733847

RESUMEN

Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells had statistically similar microbial communities despite significant changes in environmental parameters between oil fields. Together, this implies that no single microbial population is a reliable indicator of a reservoir's ability to degrade crude oil to methane, and that geochemistry may be a more important indicator for selecting a reservoir suitable for microbial enhancement of natural gas generation.

9.
Science ; 348(6233): 428-31, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25745067

RESUMEN

Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.


Asunto(s)
Ciclo del Carbono , Metano/biosíntesis , Methanomicrobiales/metabolismo , Animales , Isótopos de Carbono/química , Bovinos , Agua Subterránea/química , Hidrógeno/química , Metano/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA