Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 16526, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192564

RESUMEN

Studies have indicated that vagus nerve stimulation (VNS) enhances extinction learning in rodent models. Here, we investigated if pairing VNS with the conditioned stimulus is required for the enhancing effects of VNS. Adult Sprague-Dawley rats were exposed to intense stress followed by fear conditioning training to produce resistant fear. Rats were then implanted with a cuff electrode around the left vagus. After recovery, rats underwent extinction training paired with VNS (0.5 s, 0.8 mA, 100 µs, and 30 Hz) or with Sham VNS (0 mA). VNS rats were randomized into the following subgroups: During VNS (delivered during presentations of the conditioned stimulus, CS), Between VNS (delivered between CS presentations), Continuous VNS (delivered during the entire extinction session), and Dispersed VNS (delivered at longer inter-stimulation intervals across the extinction session). Sham VNS rats failed to extinguish the conditioned fear response over 5 days of repeated exposure to the CS. Rats that received Between or Dispersed VNS showed modest improvement in conditioned fear at the retention test. During and Continuous VNS groups displayed the greatest reduction in conditioned fear. These findings indicate that delivering VNS paired precisely with CS presentations or continuously throughout extinction promotes the maximum enhancement in extinction learning.


Asunto(s)
Trastornos por Estrés Postraumático , Estimulación del Nervio Vago , Animales , Ratas , Extinción Psicológica/fisiología , Miedo/fisiología , Ratas Sprague-Dawley , Trastornos por Estrés Postraumático/terapia , Nervio Vago
2.
Artículo en Inglés | MEDLINE | ID: mdl-36303861

RESUMEN

Anxiety disorders affect a large percentage of individuals who have an autism spectrum disorder (ASD). In children with ASD, excessive anxiety is also linked to gastrointestinal problems, self-injurious behaviors, and depressive symptoms. Exposure-based cognitive behavioral therapies are effective treatments for anxiety disorders in children with ASD, but high relapse rates indicate the need for additional treatment strategies. This perspective discusses evidence from preclinical research, which indicates that vagus nerve stimulation (VNS) paired with exposure to fear-provoking stimuli and situations could offer benefits as an adjuvant treatment for anxiety disorders that coexist with ASD. Vagus nerve stimulation is approved for use in the treatment of epilepsy, depression, and more recently as an adjuvant in rehabilitative training following stroke. In preclinical models, VNS shows promise in simultaneously enhancing consolidation of extinction memories and reducing anxiety. In this review, we will present potential mechanisms by which VNS could treat fear and anxiety in ASD. We also discuss potential uses of VNS to treat depression and epilepsy in the context of ASD, and noninvasive methods to stimulate the vagus nerve.

3.
Neurobiol Learn Mem ; 185: 107539, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34648950

RESUMEN

The basolateral complex of the amygdala (BLA) is critically involved in modulation of memory by stress hormones. Noradrenergic activation of the BLA enhances memory consolidation and plays a necessary role in the enhancing or impairing effects of stress hormones on memory. The BLA is not only involved in the consolidation of aversive memories but can regulate appetitive memory formation as well. Extensive evidence suggests that the BLA is a modulatory structure that influences consolidation of arousing memories through modulation of plasticity and expression of plasticity-related genes, such as the activity regulated cytoskeletal-associated (Arc/Arg 3.1) protein, in efferent brain regions. ARC is an immediate early gene whose mRNA is localized to the dendrites and is necessary for hippocampus-dependent long-term potentiation and long-term memory formation. Post-training intra-BLA infusions of the ß-adrenoceptor agonist, clenbuterol, enhances memory for an aversive task and increases dorsal hippocampus ARC protein expression following training on that task. To examine whether this function of BLA noradrenergic signaling extends to the consolidation of appetitive memories, the present studies test the effect of post-training intra-BLA infusions of clenbuterol on memory for the appetitive conditioned place preference (CPP) task and for effects on ARC protein expression in hippocampal synapses. Additionally, the necessity of increased hippocampal ARC protein expression was also examined for long-term memory formation of the CPP task. Immediate post-training intra-BLA infusions of clenbuterol (4 ng/0.2 µL) significantly enhanced memory for the CPP task. This same memory enhancing treatment significantly increased ARC protein expression in dorsal, but not ventral, hippocampal synaptic fractions. Furthermore, immediate post-training intra-dorsal hippocampal infusions of Arc antisense oligodeoxynucleotides (ODNs), which reduce ARC protein expression, prevented long-term memory formation for the CPP task. These results suggest that noradrenergic activity in the BLA influences long-term memory for aversive and appetitive events in a similar manner and the role of the BLA is conserved across classes of memory. It also suggests that the influence of the BLA on hippocampal ARC protein expression and the role of hippocampal ARC protein expression are conserved across classes of emotionally arousing memories.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Complejo Nuclear Basolateral/fisiología , Clenbuterol/farmacología , Condicionamiento Operante/fisiología , Proteínas del Citoesqueleto/fisiología , Hipocampo/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Masculino , Memoria/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos
4.
Neurobiol Learn Mem ; 184: 107490, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34302951

RESUMEN

Memories of emotionally arousing events tend to endure longer than other memories. This review compiles findings from several decades of research investigating the role of the amygdala in modulating memories of emotional experiences. Episodic memory is a kind of declarative memory that depends upon the hippocampus, and studies suggest that the basolateral complex of the amygdala (BLA) modulates episodic memory consolidation through interactions with the hippocampus. Although many studies in rodents and imaging studies in humans indicate that the amygdala modulates memory consolidation and plasticity processes in the hippocampus, the anatomical pathways through which the amygdala affects hippocampal regions that are important for episodic memories were unresolved until recent optogenetic advances made it possible to visualize and manipulate specific BLA efferent pathways during memory consolidation. Findings indicate that the BLA influences hippocampal-dependent memories, as well as synaptic plasticity, histone modifications, gene expression, and translation of synaptic plasticity associated proteins in the hippocampus. More recent findings from optogenetic studies suggest that the BLA modulates spatial memory via projections to the medial entorhinal cortex, and that the frequency of activity in this pathway is a critical element of this modulation.


Asunto(s)
Amígdala del Cerebelo/fisiología , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Corteza Entorrinal/fisiología , Humanos , Vías Nerviosas/fisiología
5.
Exp Neurol ; 341: 113718, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33844986

RESUMEN

Studies in rodents indicate that pairing vagus nerve stimulation (VNS) with extinction training enhances fear extinction. However, the role of stimulation parameters on the effects of VNS remains largely unknown. Identifying the optimal stimulation intensity is a critical step in clinical translation of neuromodulation-based therapies. Here, we sought to investigate the role of stimulation intensity in rats receiving VNS paired with extinction training in a rat model for Posttraumatic Stress Disorder (PTSD). Male Sprague-Dawley rats underwent single prolonged stress followed by a severe fear conditioning training and were implanted with a VNS device. After recovery, independent groups of rats were exposed to extinction training paired with sham (0 mA) or VNS at different intensities (0.4, 0.8, or 1.6 mA). VNS intensities of 0.4 mA or 0.8 mA decreased conditioned fear during extinction training compared to sham stimulation. Pairing extinction training with moderate VNS intensity of 0.8 mA produced significant reduction in conditioned fear during extinction retention when rats were tested a week after VNS-paired extinction. High intensity VNS at 1.6 mA failed to enhance extinction. These findings indicate that a narrow range of VNS intensities enhances extinction learning, and suggest that the 0.8 mA VNS intensity used in earlier rodent and human stroke studies may also be the optimal in using VNS as an adjuvant in exposure therapies for PTSD.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Estimulación del Nervio Vago/métodos , Animales , Masculino , Ratas , Ratas Sprague-Dawley
6.
Neurobiol Learn Mem ; 181: 107425, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33771710

RESUMEN

Traumatic experiences involve complex sensory information, and individuals with trauma-related psychological disorders, such as posttraumatic stress disorder (PTSD), can exhibit abnormal fear to numerous different stimuli that remind them of the trauma. Vagus nerve stimulation (VNS) enhances extinction of auditory fear conditioning in rat models for PTSD. We recently found that VNS-paired extinction can also promote extinction generalization across different auditory cues. Here we tested whether VNS can enhance extinction of olfactory fear and promote extinction generalization across auditory and olfactory sensory modalities. Male Sprague Dawley rats were implanted with a stimulating cuff on the cervical vagus nerve. Rats then received two days of fear conditioning where olfactory (amyl acetate odor) and auditory (9 kHz tones) stimuli were concomitantly paired with footshock. Twenty-four hours later, rats were given three days of sham or VNS-paired extinction (5 stimulations, 30-sec trains at 0.4 mA) overlapping with presentation of either the olfactory or the auditory stimulus. Two days later, rats were given an extinction retention test where avoidance of the olfactory stimulus or freezing to the auditory stimulus were measured. VNS-paired with exposure to the olfactory stimulus during extinction reduced avoidance of the odor in the retention test. VNS-paired with exposure to the auditory stimulus during extinction also decreased avoidance of the olfactory cue, and VNS paired with exposure to the olfactory stimulus during extinction reduced freezing when the auditory stimulus was presented in the retention test. These results indicate that VNS enhances extinction of olfactory fear and promotes extinction generalization across different sensory modalities. Extinction generalization induced by VNS may therefore improve outcomes of exposure-based therapies.


Asunto(s)
Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Generalización Psicológica/fisiología , Estimulación del Nervio Vago/métodos , Estimulación Acústica , Animales , Reacción de Prevención/fisiología , Miedo , Terapia Implosiva , Masculino , Estimulación Física , Ratas , Ratas Sprague-Dawley , Olfato , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/terapia
7.
Front Behav Neurosci ; 15: 780326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987362

RESUMEN

Post-traumatic stress disorder (PTSD) is associated with decreased activity in the prefrontal cortex. PTSD-like pathophysiology and behaviors have been observed in rodents exposed to a single prolonged stress (SPS) procedure. When animals are left alone for 7 days after SPS treatment, they show increased anxiety-like behavior and impaired extinction of conditioned fear, and reduced activity in the prefrontal cortex. Here, we tested the hypothesis that daily optogenetic stimulation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) during the 7 days after SPS would reverse SPS effects on anxiety and fear extinction. Male Sprague-Dawley rats underwent SPS and then received daily optogenetic stimulation (20 Hz, 2 s trains, every 10 s for 15 min/day) of glutamatergic neurons of the left or right IL for seven days. After this incubation period, rats were tested in the elevated plus-maze (EPM). Twenty-four hours after the EPM test, rats underwent auditory fear conditioning (AFC), extinction training and a retention test. SPS increased anxiety-like behavior in the EPM task and produced a profound impairment in extinction of AFC. Optogenetic stimulation of the left IL, but not right, during the 7-day incubation period reversed the extinction impairment. Optogenetic stimulation did not reverse the increased anxiety-like behavior, suggesting that the extinction effects are not due to a treatment-induced reduction in anxiety. Results indicate that increased activity of the left IL after traumatic experiences can prevent development of extinction impairments. These findings suggest that non-invasive brain stimulation may be a useful tool for preventing maladaptive responses to trauma.

8.
Neuropsychopharmacology ; 46(6): 1172-1182, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33007779

RESUMEN

The basolateral amygdala (BLA) modulates the consolidation of dorsal hippocampus (DH)-dependent spatial and dorsolateral striatum (DLS)-dependent cued-response memories, often in competition with one another. Evidence suggests that a critical mechanism for BLA influences on memory consolidation is via effects on activity-regulated cytoskeletal-associated protein (ARC) in downstream brain regions. However, the circuitry by which the BLA modulates ARC in multiple competing memory systems remains unclear. Prior evidence indicates that optogenetic stimulation of BLA projections to the medial entorhinal cortex (mEC) enhances the consolidation of spatial learning and impairs the consolidation of cued-response learning, suggesting this pathway provides a circuit for favoring one system over another. Therefore, we hypothesized the BLA-mEC pathway mediates effects on downstream ARC-based synaptic plasticity related to these competing memory systems. To address this, male and female Sprague-Dawley rats underwent spatial or cued-response Barnes maze training and, 45 min later, were sacrificed for ARC analysis in synaptoneurosomes from the DH and DLS. Initial experiments found that spatial training alone increased ARC levels in the DH above those observed in control rats and rats that underwent a cued-response version of the task. Postspatial training optogenetic stimulation of the BLA-mEC pathway altered the balance of ARC expression in the DH vs. DLS, specifically shifting the balance in favor of the DH-based spatial memory system, although the precise region of ARC changes differed by sex. These findings suggest that BLA-mEC pathway influences on ARC in downstream regions are a mechanism by which the BLA can favor one memory system over another.


Asunto(s)
Complejo Nuclear Basolateral , Amígdala del Cerebelo , Animales , Corteza Entorrinal , Femenino , Hipocampo , Masculino , Ratas , Ratas Sprague-Dawley , Memoria Espacial
9.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33148657

RESUMEN

An ongoing debate surrounding transcranial direct current stimulation (tDCS) of the scalp is whether it modulates brain activity both directly and in a regionally constrained manner enough to positively affect symptoms in patients with neurological disorders. One alternative explanation is that direct current stimulation affects neural circuits mainly indirectly, i.e., via peripheral nerves. Here, we report that noninvasive direct current stimulation indirectly affects neural circuits via peripheral nerves. In a series of studies, we show that direct current stimulation can cause activation of the greater occipital nerve (ON-tDCS) and augments memory via the ascending fibers of the occipital nerve to the locus coeruleus, promoting noradrenaline release. This noradrenergic pathway plays a key role in driving hippocampal activity by modifying functional connectivity supporting the consolidation of a memory event.

10.
Artículo en Inglés | MEDLINE | ID: mdl-31863872

RESUMEN

Vagus nerve stimulation (VNS) has shown promise as an adjuvant treatment for posttraumatic stress disorder (PTSD), as it enhances fear extinction and reduces anxiety symptoms in multiple rat models of this condition. Yet, identification of the optimal stimulation paradigm is needed to facilitate clinical translation of this potential therapy. Using an extinction-resistant rat model of PTSD, we tested whether varying VNS intensity and duration could maximize extinction learning while minimizing the total amount of stimulation. We confirmed that sham rats failed to extinguish after a week of extinction training. Delivery of the standard LONG VNS trains (30 s) at 0.4 mA enhanced extinction and reduced anxiety but did not prevent fear return. Increasing the intensity of LONG VNS trains to 0.8 mA prevented fear return and attenuated anxiety symptoms. Interestingly, delivering 1, 4 or 16 SHORT VNS bursts (0.5 s) at 0.8 mA during each cue presentation in extinction training also enhanced extinction. LONG VNS trains or multiple SHORT VNS bursts at 0.8 mA attenuated fear renewal and reinstatement, promoted extinction generalization and reduced generalized anxiety. Delivering 16 SHORT VNS bursts also facilitated extinction in fewer trials. This study provides the first evidence that brief bursts of VNS can enhance extinction training, reduce relapse and support symptom remission using much less VNS than previous protocols. These findings suggest that VNS parameters can be adjusted in order to minimize total charge delivery and maximize therapeutic effectiveness.


Asunto(s)
Extinción Psicológica/fisiología , Trastornos por Estrés Postraumático/psicología , Trastornos por Estrés Postraumático/terapia , Estimulación del Nervio Vago/métodos , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Trastornos por Estrés Postraumático/fisiopatología
11.
J Affect Disord ; 265: 552-557, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31784117

RESUMEN

BACKGROUND: Chronic vagus nerve stimulation (VNS) attenuates anxiety in rats and humans. However, it is unclear whether VNS can promote acute anxiolytic effects. Here we examined short-term anxiolytic effects of VNS using single or multiple trains in rats submitted to a battery of tests. METHODS: Three groups of rats were implanted with VNS cuffs and tested for anxiety using the elevated plus maze (EPM), novelty suppressed feeding (NSF), and acoustic startle response (ASR), after receiving either one or five VNS trains (0.4 mA/30 Hz/30­sec), or sham stimulation. RESULTS: Both single and multiple VNS trains reduced state anxiety as measured using the EPM, but only multiple trains reduced anxiety in the EPM and NSF. VNS did not decrease arousal as measured using the ASR. LIMITATIONS: The anxiolytic effects of VNS may be differently influenced by test order or prior-exposure to stress. VNS did not affect startle responses in naïve rats but the present findings do not determine whether VNS would affect startle responses that are potentiated by fear or anxiety. CONCLUSION: A single VNS train can produce an anxiolytic-like effect in the EPM minutes later, an effect that is not observed in the NSF. Delivering 5 VNS trains restores the immediate effects across tests of anxiety, indicating that more trains produce a more robust anxiolytic effect. The lack of effects on ASR suggests that VNS affects state anxiety but not baseline arousal in naïve rats. We suggest that the anxiolytic effect of VNS can increase tolerability and reduce dropout in exposure-based therapies.


Asunto(s)
Ansiolíticos , Estimulación del Nervio Vago , Animales , Ansiolíticos/farmacología , Ansiedad/terapia , Miedo , Ratas , Reflejo de Sobresalto , Nervio Vago
12.
Learn Mem ; 26(7): 245-251, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209119

RESUMEN

Vagus nerve stimulation (VNS) enhances extinction of conditioned fear in rats. Previous findings support the hypothesis that VNS effects on extinction are due to enhanced consolidation of extinction memories through promotion of plasticity in extinction-related brain pathways however, alternative explanations are plausible. According to one hypothesis, VNS may produce a hedonic effect and enhance extinction through counter-conditioning. According to another hypothesis, VNS reduces anxiety during exposure and this weakens the association of conditioned stimuli with aversive conditioned responses. The present set of experiments (1) used conditioned place preference (CPP) to identify potential rewarding effects associated with VNS and (2) examined the peripheral effects of VNS on anxiety and extinction enhancement. Male Sprague-Dawley rats were surgically implanted with cuff electrodes around the vagus nerve and subjected to a CPP task in which VNS and sham stimulation were each paired with one of two distinct contexts over the course of 5 d. Following this procedure, rats did not show a place preference, suggesting that VNS is not rewarding or aversive. The role of the peripheral parasympathetic system in the anxiolytic effect of VNS on the elevated plus maze was examined by blocking peripheral muscarinic receptors with intraperitoneal administration of methyl scopolamine prior to VNS. Methyl scopolamine blocked the VNS-induced reduction in anxiety but did not interfere with VNS enhancement of extinction of conditioned fear, indicating that the anxiety-reducing effect of VNS is not necessary for the extinction enhancement.


Asunto(s)
Ansiedad/fisiopatología , Extinción Psicológica/fisiología , Miedo/fisiología , Sistema Nervioso Parasimpático/fisiopatología , Estimulación del Nervio Vago , Animales , Ansiedad/tratamiento farmacológico , Condicionamiento Clásico/fisiología , Vías Eferentes/fisiología , Electrodos Implantados , Electrochoque , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Modelos Neurológicos , Modelos Psicológicos , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/uso terapéutico , N-Metilescopolamina/farmacología , N-Metilescopolamina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/fisiología
13.
Stress ; 22(4): 509-520, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010369

RESUMEN

We have shown that vagus nerve stimulation (VNS) enhances extinction of conditioned fear and reduces anxiety in rat models of PTSD using moderate stress. However, it is still unclear if VNS can be effective in enhancing extinction of severe fear after prolonged and repeated trauma. Severe fear was induced in adult male rats by combining single prolonged stress (SPS) and protracted aversive conditioning (PAC). After SPS and PAC procedures, rats were implanted with stimulating cuff electrodes, exposed to five days of extinction training with or without VNS, and then tested for extinction retention, return of fear in a new context and reinstatement. The elevated plus maze, open field and startle were used to test anxiety. Sham rats showed no reduction of fear during extensive extinction training. VNS-paired with extinction training reduced freezing at the last extinction session by 70% compared to sham rats. VNS rats exhibited half as much fear as shams, as well as less fear renewal. Sham rats exhibited significantly more anxiety than naive controls, whereas VNS rats did not. These results demonstrate that VNS enhances extinction and reduces anxiety in a severe model of PTSD that combined SPS and a conditioning procedure that is 30 times more intense than the conditioning procedures in previous VNS studies. The broad utility of VNS in enhancing extinction learning in rats and the strong clinical safety record of VNS suggest that VNS holds promise as an adjuvant to exposure-based therapy in people with PTSD and other complex forms of this condition.


Asunto(s)
Extinción Psicológica/fisiología , Trastornos por Estrés Postraumático/psicología , Estrés Psicológico/psicología , Estimulación del Nervio Vago/psicología , Nervio Vago/fisiología , Animales , Ansiedad/fisiopatología , Condicionamiento Psicológico , Miedo/fisiología , Aprendizaje/fisiología , Masculino , Ratas
14.
Psychopharmacology (Berl) ; 236(1): 355-367, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30091004

RESUMEN

RATIONALE: Emotionally traumatic experiences can lead to maladaptive memories that are enduring and intrusive. The goal of exposure-based therapies is to extinguish conditioned fears through repeated, unreinforced exposures to reminders of traumatic events. The extinction of conditioned fear depends upon the consolidation of new memories made during exposure to reminders. An impairment in extinction recall, observed in certain patient populations, can interfere with progress in exposure-based therapies, and the drive to avoid thoughts and reminders of the trauma can undermine compliance and increase dropout rate. Effective adjuncts to exposure-based therapies should improve the consolidation and maintenance of the extinction memory or improve the tolerability of the therapy. Under stressful conditions, the vagus nerve responds to elevations in epinephrine and signals the brain to facilitate the storage of new memories while, as part of the parasympathetic nervous system, it slows the sympathetic response. OBJECTIVE: Here, we review studies relevant to fear extinction, describing the anatomical and functional characteristics of the vagus nerve and mechanisms of vagus nerve stimulation (VNS)-induced memory enhancement and plasticity. RESULTS: We propose that stimulation of the left cervical vagus nerve during exposure to conditioned cues signals the brain to store new memories just as epinephrine or emotional arousal would do, but bypasses the peripheral sympathetic "fight-or-flight" response. CONCLUSIONS: In support of this hypothesis, we have found that VNS accelerates extinction and prevents reinstatement of conditioned fear in rats. Finally, we propose future studies targeting the optimization of stimulation parameters and the search for biomarkers of VNS effectiveness that may improve exposure therapy outcomes.


Asunto(s)
Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Terapia Implosiva/métodos , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/terapia , Estimulación del Nervio Vago/métodos , Animales , Nivel de Alerta/fisiología , Encéfalo/fisiopatología , Terapia Combinada , Epinefrina/sangre , Humanos , Memoria/fisiología , Sistema Nervioso Parasimpático/fisiopatología , Ratas , Receptores de N-Metil-D-Aspartato/fisiología , Sistema Nervioso Simpático/fisiopatología
15.
Brain Stimul ; 12(1): 9-18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30287193

RESUMEN

BACKGROUND: Exposure-based therapies are used to treat a variety of trauma- and anxiety-related disorders by generating successful extinction following cue exposure during treatment. The development of adjuvant strategies that accelerate extinction learning, improve tolerability, and increase efficiency of treatment could increase the efficacy of exposure-based therapies. Vagus nerve stimulation (VNS) paired with exposure can enhance fear extinction, in rat models of psychiatric disorders, and chronic administration of VNS reduces anxiety in rats and humans. OBJECTIVE: We tested whether VNS, like other cognitive enhancers, could produce generalization of extinction for stimuli that are not presented during the extinction sessions, but are associated with the fear event. METHODS: Male Sprague Dawley rats underwent auditory fear conditioning with two easily discriminable auditory stimuli. Following fear conditioning, extinction training consisted of exposure to only one of the conditioned sounds. Half of the rats received VNS and half received sham stimulation during with sound presentations. VNS effects on anxiety were examined in a separate study where VNS was administered prior to testing on the elevated plus maze. RESULTS: Sham stimulated rats given 20 presentations of a conditioned stimulus (CS) during the extinction session showed performance that was matched to VNS-treated rats given only 4 presentations of the CS. Despite comparable levels of freezing to the presented CS, only the VNS-treated rats showed a significant decrease in freezing to the CS that was not presented. VNS-induced generalization of extinction was observed only when the two sounds were paired with footshock within the same fear conditioning session; VNS did not promote generalization of extinction when the two sounds were conditioned on different days or in different contexts. On the anxiety test, VNS administration significantly increased time spent in the open arms of the elevated plus maze. CONCLUSION: These results provide evidence that VNS can promote generalization of extinction to other stimuli associated with a specific fear experience. Furthermore, non-contingent VNS appears to reduce anxiety. The ability to generalize extinction and reduce anxiety makes VNS a potential candidate for use as an adjunctive strategy to improve the efficacy and tolerability of exposure-based therapies.


Asunto(s)
Trastornos de Ansiedad/terapia , Miedo , Estimulación del Nervio Vago/métodos , Animales , Condicionamiento Clásico , Extinción Psicológica , Masculino , Ratas , Ratas Sprague-Dawley
16.
J Neurosci Methods ; 298: 54-65, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452180

RESUMEN

BACKGROUND: Fear conditioning (FC) in rodents is the most used animal model to investigate the neurobiology of posttraumatic stress disorder (PTSD). Although research using FC has generated a better understanding of fear memories, studies often rely on mild or moderate FC training and behavioral analysis generally focuses on measuring freezing responses within few test sessions. NEW METHOD: We introduce the M-Maze task, a system that measures extinction of conditioned fear using suppression of operant behavior. The apparatus consists of an M-shaped maze where rats are trained to alternate nose poking at two pellet dispensers. Proximity sensors measure the animal's locomotion, as well as the latencies and number of operant behaviors. Here we also describe the protracted aversive conditioning (PAC), a rat model of severe fear that induces resistant extinction following a 4-day conditioning protocol that combines delay, unpredictable, and short- and long-trace conditioning. RESULTS: An intense one-day auditory FC protocol induced a sharp elevation in transit time and suppression of nose pokes by conditioned cues, but in contrast to what is found in PTSD patients, fear extinction was rapidly observed. On the other hand, PAC alone or in combination with exposure to single prolonged stress induced persistent extinction impairments in M-Maze tests, as well as enhanced anxiety, and social withdrawal. COMPARISON WITH OTHER EXISTING METHODS: The M-Maze task is fully automated and allows multiple animals to be tested simultaneously in long-term experiments. Moreover, PAC training can be an alternative approach to study extinction-resistant fear. CONCLUSIONS: The M-Maze task allows rapid and unbiased measurements of fear-induced suppression. We suggest that long-term assessment of extinction impairments would lead to a better understanding of the neurobiology of persistent fear and the screening for new therapies.


Asunto(s)
Automatización de Laboratorios , Reacción de Prevención , Condicionamiento Psicológico , Miedo , Aprendizaje por Laberinto , Memoria , Animales , Percepción Auditiva , Automatización de Laboratorios/instrumentación , Automatización de Laboratorios/métodos , Modelos Animales de Enfermedad , Electrochoque , Diseño de Equipo , Extinción Psicológica , Masculino , Actividad Motora , Pruebas Psicológicas , Ratas Sprague-Dawley , Reflejo de Sobresalto , Conducta Social , Trastornos por Estrés Postraumático
17.
J Neurosci ; 38(11): 2698-2712, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29431646

RESUMEN

Although evidence suggests that the basolateral amygdala (BLA) and dorsal hippocampus (DH) work together to influence the consolidation of spatial/contextual learning, the circuit mechanism by which the BLA selectively modulates spatial/contextual memory consolidation is not clear. The medial entorhinal cortex (mEC) is a critical region in the hippocampus-based system for processing spatial information. As an efferent target of the BLA, the mEC is a candidate by which the BLA influences the consolidation of such learning. To address several questions regarding this issue, male Sprague Dawley rats received optogenetic manipulations of different BLA afferents immediately after training in different learning tasks. Optogenetic stimulation of the BLA-mEC pathway using ChR2(E123A) after spatial and cued-response Barnes maze training enhanced and impaired retention, respectively, whereas optical inhibition of the pathway using eNpHR3.0 produced trends in the opposite direction. Similar stimulation of the BLA-posterior dorsal striatum pathway had no effect. BLA-mEC stimulation also selectively enhanced retention for the contextual, but not foot shock, component of a modified contextual fear-conditioning procedure. In both sets of experiments, only stimulation using bursts of 8 Hz light pulses significantly enhanced retention, suggesting the importance of driving activity in this frequency range. An 8 Hz stimulation of the BLA-mEC pathway increased local field potential power in the same frequency range in the mEC and in the DH. Together, the present findings suggest that the BLA modulates the consolidation of spatial/contextual memory via projections to the mEC and that activity within the 8 Hz range is critical for this modulation.SIGNIFICANCE STATEMENT The mechanism by which the basolateral amygdala (BLA) influences the consolidation of spatial/contextual memory is unknown. Using an optogenetic approach with multiple behavioral procedures, we found that immediate posttraining 8 Hz stimulation of BLA projections to the medial entorhinal cortex (mEC) enhanced retention for spatial/contextual memory, impaired retention for cued-response memory, and had no effect on foot shock learning for contextual fear conditioning. Electrophysiological recordings confirmed that 8 Hz stimulation of this pathway increased activity in the 8 Hz range in the mEC and in the dorsal hippocampus, a region critical for spatial memory consolidation. This suggests that coordinated BLA activity with downstream regions in the 8 Hz activity range immediately after training is important for consolidation of multiple memory forms.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Entorrinal/fisiología , Aprendizaje/fisiología , Aprendizaje Espacial/fisiología , Vías Aferentes/fisiología , Animales , Condicionamiento Psicológico , Señales (Psicología) , Electrochoque , Masculino , Aprendizaje por Laberinto , Memoria/fisiología , Consolidación de la Memoria , Optogenética , Ratas , Ratas Sprague-Dawley , Ritmo Teta
18.
Cannabis Cannabinoid Res ; 2(1): 202-209, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29082317

RESUMEN

Background: Because delta-9-tetrahydrocannabinol (THC), the primary psychoactive ingredient in cannabis, binds to cannabinoid 1 (CB1) receptors, levels of CB1 protein could serve as a potential biomarker for response to THC. To date, available techniques to characterize CB1 expression and function in vivo are limited. In this study, we developed an assay to quantify CB1 in lymphocytes to determine how it relates to cannabis use in 58 daily cannabis users compared with 47 nonusers. Furthermore, we tested whether CB1 levels are associated with mutations in a single nucleotide polymorphism known to regulate CB1 functioning (i.e., rs2023239). Methods: Total protein concentration was analyzed through the Pierce BCA Protein assay kit. CB1 protein was quantified through CNR1 enzyme-linked immunosorbent assay (ELISA) kit from MyBioSource. CB1 concentration and total protein concentration were quantified and used to calculate a ratio of CB1 to total protein. Results: Inherent levels of peripheral lymphocyte CB1 were sufficient for quantification through ELISA without protein amplification. We found a group×genotype interaction such that users with the G allele had greater CB1 concentration than users with the A/A genotype, and a trend-level difference between genotypes in nonusers. Conclusions: This study demonstrates a minimally invasive technique of CB1 quantification that holds promise for the use of CB1 protein concentration, along with rs2023239 genotype, as a potential biomarker for susceptibility to cannabis use. These results suggest a gene (rs2023239 G)×environment (cannabis use) effect on CB1 density.

19.
Front Pharmacol ; 8: 663, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29018340

RESUMEN

High levels of emotional arousal can impair spatial memory mediated by the hippocampus, and enhance stimulus-response (S-R) habit memory mediated by the dorsolateral striatum (DLS). The present study was conducted to determine whether these memory systems may be similarly affected in an animal model of post-traumatic stress disorder (PTSD). Sprague-Dawley rats were subjected to a "single-prolonged stress" (SPS) procedure and 1 week later received training in one of two distinct versions of the plus-maze: a hippocampus-dependent place learning task or a DLS-dependent response learning task. Results indicated that, relative to non-stressed control rats, SPS rats displayed slower acquisition in the place learning task and faster acquisition in the response learning task. In addition, extinction of place learning and response learning was impaired in rats exposed to SPS, relative to non-stressed controls. The influence of SPS on hippocampal spatial memory and DLS habit memory observed in the present study may be relevant to understanding some common features of PTSD, including hippocampal memory deficits, habit-like avoidance responses to trauma-related stimuli, and greater likelihood of developing drug addiction and alcoholism.

20.
Front Pharmacol ; 8: 615, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955225

RESUMEN

The endurance of memories of emotionally arousing events serves the adaptive role of minimizing future exposure to danger and reinforcing rewarding behaviors. However, following a traumatic event, a subset of individuals suffers from persistent pathological symptoms such as those seen in posttraumatic stress disorder (PTSD). Despite the availability of pharmacological treatments and evidence-based cognitive behavioral therapy, a considerable number of PTSD patients do not respond to the treatment, or show partial remission and relapse of the symptoms. In controlled laboratory studies, PTSD patients show deficient ability to extinguish conditioned fear. Failure to extinguish learned fear could be responsible for the persistence of PTSD symptoms such as elevated anxiety, arousal, and avoidance. It may also explain the high non-response and dropout rates seen during treatment. Animal models are useful for understanding the pathophysiology of the disorder and the development of new treatments. This review examines studies in a rodent model of PTSD with the goal of identifying behavioral and physiological factors that predispose individuals to PTSD symptoms. Single prolonged stress (SPS) is a frequently used rat model of PTSD that involves exposure to several successive stressors. SPS rats show PTSD-like symptoms, including impaired extinction of conditioned fear. Since its development by the Liberzon lab in 1997, the SPS model has been referred to by more than 200 published papers. Here we consider the findings of these studies and unresolved questions that may be investigated using the model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...