Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
2.
iScience ; 27(6): 109949, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799567

RESUMEN

As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.

3.
BMJ Open ; 14(4): e073639, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38631839

RESUMEN

INTRODUCTION: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patient's quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients.Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures.IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments. METHODS AND ANALYSIS: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk. TRIAL REGISTRATION NUMBER: ISRCTN96296121.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/terapia , Enfermedad de Crohn/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Estudios Multicéntricos como Asunto , Estudios Observacionales como Asunto , Medicina de Precisión , Estudios Prospectivos , Calidad de Vida
4.
Genet Med ; 26(6): 101104, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38411040

RESUMEN

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.


Asunto(s)
Proteínas Hierro-Azufre , Pez Cebra , Animales , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Masculino , Femenino , Fenotipo , Fibroblastos/metabolismo , Fibroblastos/patología , Citosol/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Microcefalia/genética , Microcefalia/patología , Lactante , Metalochaperonas
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166978, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061598

RESUMEN

Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Encéfalo/metabolismo , Inmunidad Innata , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fagocitosis/genética , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/farmacología
7.
Ageing Res Rev ; 92: 102132, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984625

RESUMEN

Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.


Asunto(s)
Infecciones por VIH , Inhibidores de la Transcriptasa Inversa , Humanos , Inhibidores de la Transcriptasa Inversa/efectos adversos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Reposicionamiento de Medicamentos , Infecciones por VIH/tratamiento farmacológico , Envejecimiento
8.
Nat Commun ; 14(1): 2779, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188705

RESUMEN

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Asunto(s)
Envejecimiento , Antidepresivos , Harmina , Mitocondrias , Mitofagia , Monoaminooxidasa , Receptores de GABA-A , Harmina/análogos & derivados , Harmina/farmacología , Antidepresivos/farmacología , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Músculo Esquelético/efectos de los fármacos , Hígado/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Resistencia a la Insulina , Intolerancia a la Glucosa/metabolismo , Estado Prediabético/metabolismo , Monoaminooxidasa/metabolismo , Receptores de GABA-A/metabolismo , Longevidad/efectos de los fármacos , Caenorhabditis elegans , Drosophila melanogaster , Fragilidad/prevención & control , Condicionamiento Físico Animal , Modelos Animales , Masculino , Femenino , Animales , Ratones , Hígado Graso/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos
9.
Cell Rep ; 42(1): 111928, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640360

RESUMEN

The human population is aging, and the need for interventions to slow progression of age-related diseases (geroprotective interventions) is growing. Repurposing compounds already used clinically, usually at modified doses, allows rapid implementation of geroprotective pharmaceuticals. Here we find the anti-retroviral nucleoside reverse transcriptase inhibitor (NRTI) zidovudine robustly extends lifespan and health span in C. elegans, independent of electron transport chain impairment or ROS accumulation. Rather, zidovudine treatment modifies pyrimidine metabolism and transcripts related to proteostasis. Testing regulators of mitochondrial stress and proteostasis shows that lifespan extension is dependent on activating transcription factor 4 (ATF-4). ATF-4 regulates longevity induced by mitochondrial stress, specifically communication between mitochondrial and cytosolic translation. Translation is reduced in zidovudine-treated worms, also dependent on ATF-4. Finally, we show ATF-4-dependent lifespan extension induced by didanosine, another NRTI. Altogether, our work elucidates the geroprotective effects of NRTIs such as zidovudine in vivo, via reduction of translation and ATF-4.


Asunto(s)
Infecciones por VIH , Zidovudina , Animales , Humanos , Zidovudina/farmacología , Zidovudina/uso terapéutico , Longevidad , Factor de Transcripción Activador 4 , Caenorhabditis elegans/fisiología , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Retroviridae , Infecciones por VIH/tratamiento farmacológico
10.
Nutr Bull ; 47(2): 230-245, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35942240

RESUMEN

This paper explores changes to school food standards from 2010, free school meal provision during the COVID-19 pandemic across the UK and potential implications for children's diets. To obtain information on UK school food policies and free school meal provision methods we reviewed several sources including news articles, policy documents and journal articles. School food is an important part of the UK's health agenda and commitment to improving children's diets. Each UK nation has food-based standards implemented, however, only Scotland and Wales also have nutrient-based standards. School food standards in each nation have been updated in the last decade. Universal free school meals are available for children in the first 3 years of primary school in England and the first 5 years of primary school in Scotland, with plans announced for implementation of free school meals for all primary schoolchildren in Scotland and Wales. There is a lack of consistent monitoring of school food across the UK nations, and a lack of reporting compliance to the standards. Each nation differed in its response and management of free school meals during COVID-related school closures. Further, there are issues surrounding the monitoring of the methods to provide free school meal support during school closures. The role of school food has been highlighted during COVID-19, and with this, there have been calls for a review of free school meal eligibility criteria. The need for improved and consistent monitoring of school food across the UK remains, as does the need to evaluate the impact of school food on children's diets.


Asunto(s)
Dieta , Servicios de Alimentación , COVID-19/epidemiología , Niño , Humanos , Comidas , Pandemias , Instituciones Académicas , Reino Unido/epidemiología
11.
Front Aging ; 3: 903049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821857

RESUMEN

Public attention and interest for longevity interventions are growing. These can include dietary interventions such as intermittent fasting, physical interventions such as various exercise regimens, or through supplementation of nutraceuticals or administration of pharmaceutics. However, it is unlikely that most interventions identified in model organisms will translate to humans, or that every intervention will benefit each person equally. In the worst case, even detrimental health effects may occur. Therefore, identifying longevity interventions using human data and tracking the aging process in people is of paramount importance as we look towards longevity interventions for the public. In this work, we illustrate how to identify candidate longevity interventions using population data in humans, an approach we have recently employed. We consider metformin as a case-study for potential confounders that influence effectiveness of a longevity intervention, such as lifestyle, sex, genetics, age of administration and the microbiome. Indeed, metformin, like most other longevity interventions, may end up only benefitting a subgroup of individuals. Fortunately, technologies have emerged for tracking the rate of 'biological' aging in individuals, which greatly aids in assessing effectiveness. Recently, we have demonstrated that even wearable devices, accessible to everyone, can be used for this purpose. We therefore propose how to use such approaches to test interventions in the general population. In summary, we advocate that 1) not all interventions will be beneficial for each individual and therefore 2) it is imperative that individuals track their own aging rates to assess healthy aging interventions.

12.
Sci Rep ; 12(1): 9897, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701452

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of the cellular landscape of organs. Most single-cell protocols require fresh material, which limits sample size per experiment, and consequently, introduces batch effects. This is especially true for samples acquired through complex medical procedures, such as intestinal mucosal biopsies. Moreover, the tissue dissociation procedure required for obtaining single cells is a major source of noise; different dissociation procedures applied to different compartments of the tissue induce artificial gene expression differences between cell subsets. To overcome these challenges, we have developed a one-step dissociation protocol and demonstrated its use on cryopreserved gut mucosal biopsies. Using flow cytometry and scRNA-seq analysis, we compared this one-step dissociation protocol with the current gold standard, two-step collagenase digestion, and an adaptation of a recently published alternative, three-step cold-active Bacillus licheniformus protease digestion. Both cell viability and cell type composition were comparable between the one-step and two-step collagenase dissociation, with the former being more time-efficient. The cold protease digestion resulted in equal cell viability, but better preserves the epithelial cell types. Consequently, to analyze the rarer cell types, such as glial cells, larger total biopsy cell numbers are required as input material. The multi-step protocols affected cell types spanning multiple compartments differently. In summary, we show that cryopreserved gut mucosal biopsies can be used to overcome the logistical challenges and batch effects in large scRNA-seq studies. Furthermore, we demonstrate that using cryopreserved biopsies digested using a one-step collagenase protocol enables large-scale scRNA-seq, FACS, organoid generation and intraepithelial lymphocyte expansion.


Asunto(s)
Colagenasas , Mucosa Intestinal , Citometría de Flujo/métodos , Expresión Génica , Perfilación de la Expresión Génica/métodos , Péptido Hidrolasas , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
13.
Ageing Res Rev ; 78: 101621, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35421606

RESUMEN

Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.


Asunto(s)
Longevidad , Fosfatidilinositol 3-Quinasas , Anciano , Envejecimiento/genética , Suplementos Dietéticos , Proteína Forkhead Box O3/genética , Humanos , Longevidad/fisiología , Preparaciones Farmacéuticas
14.
Pediatr Blood Cancer ; 69(1): e29352, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34532970

RESUMEN

BACKGROUND: The Electronic Surviving Cancer Competently Intervention Program (eSCCIP), a psychosocial eHealth intervention for parents and caregivers of children with cancer (parents), was delivered in a community-based psychosocial oncology center. Primary endpoints were intervention acceptability, feasibility, and accessibility, with a secondary exploratory focus on psychosocial outcomes. PROCEDURE: Oncology therapists in a psychosocial oncology center were trained in eSCCIP delivery. Participants were eligible for participation if they were the primary caregiver of a child with cancer between the ages 0 and 17, could read and write in English, and had reliable internet access to complete eSCCIP. Surveys were administered electronically at baseline and post intervention to evaluate study endpoints. Effect sizes (Cohen's d) were computed for exploratory psychosocial outcomes. Nineteen parents completed the intervention. RESULTS: Parents rated eSCCIP as highly acceptable, feasible, and accessible. A large clinical effect was detected for acute distress (d = 0.79). Moderate clinical effects were reported for overall posttraumatic stress disorder (PTSD) symptoms (d = 0.37), negative mood/cognitions (d = 0.59), and symptoms of anxiety (d = 0.48). CONCLUSIONS: Results indicate that eSCCIP is an acceptable, feasible, and accessible psychosocial intervention for parents. Exploratory analyses suggest that participation in eSCCIP may contribute to decreases in acute distress, symptoms of anxiety, and symptoms of PTSD.


Asunto(s)
Cuidadores , Neoplasias , Padres , Intervención Psicosocial , Telemedicina , Adolescente , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Neoplasias/terapia
15.
PLoS One ; 16(10): e0258316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34673799

RESUMEN

RORγt is an isoform of RORC, preferentially expressed in Th17 cells, that functions as a critical regulator of type 3 immunity. As murine Th17-driven inflammatory disease models were greatly diminished in RORC knock-out mice, this receptor was prioritised as an attractive therapeutic target for the treatment of several autoimmune diseases. Human genetic studies indicate a significant contributory role for RORC in several human disease conditions. Furthermore, genome-wide association studies (GWAS) report a significant association between inflammatory bowel disease (IBD) and the RORC regulatory variant rs4845604. To investigate if the rs4845604 variant may affect CD4+ T cell differentiation events, naïve CD4+ T cells were isolated from eighteen healthy subjects homozygous for the rs4845604 minor (A) or major (G) allele). Isolated cells from each subject were differentiated into distinct T cell lineages by culturing in either T cell maintenance medium or Th17 driving medium conditions for six days in the presence of an RORC inverse agonist (to prevent constitutive receptor activity) or an inactive diastereomer (control). Our proof of concept study indicated that genotype had no significant effect on the mean number of naïve CD4 T cells isolated, nor the frequency of Th1-like and Th17-like cells following six days of culture in any of the four culture conditions. Analysis of the derived RNA-seq count data identified genotype-driven transcriptional effects in each of the four culture conditions. Subsequent pathway enrichment analysis of these profiles reported perturbation of metabolic signalling networks, with the potential to affect the cellular detoxification response. This investigation reveals that rs4845604 genotype is associated with transcriptional effects in CD4+ T cells that may perturb immune and metabolic pathways. Most significantly, the rs4845604 GG, IBD risk associated, genotype may be associated with a differential detoxification response. This observation justifies further investigation in a larger cohort of both healthy and IBD-affected individuals.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Hipersensibilidad/genética , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Activación de Linfocitos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética , Proliferación Celular , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Enfermedades Inflamatorias del Intestino/patología , Receptores CXCR3/metabolismo
16.
Aging Cell ; 20(8): e13381, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34227219

RESUMEN

Transcriptome-based drug screening is emerging as a powerful tool to identify geroprotective compounds to intervene in age-related disease. We hypothesized that, by mimicking the transcriptional signature of the highly conserved longevity intervention of FOXO3 (daf-16 in worms) overexpression, we could identify and repurpose compounds with similar downstream effects to increase longevity. Our in silico screen, utilizing the LINCS transcriptome database of genetic and compound interventions, identified several FDA-approved compounds that activate FOXO downstream targets in mammalian cells. These included the neuromuscular blocker atracurium, which also robustly extends both lifespan and healthspan in Caenorhabditis elegans. This longevity is dependent on both daf-16 signaling and inhibition of the neuromuscular acetylcholine receptor subunit unc-38. We found unc-38 RNAi to improve healthspan, lifespan, and stimulate DAF-16 nuclear localization, similar to atracurium treatment. Finally, using RNA-seq transcriptomics, we identify atracurium activation of DAF-16 downstream effectors. Together, these data demonstrate the capacity to mimic genetic lifespan interventions with drugs, and in doing so, reveal that the neuromuscular acetylcholine receptor regulates the highly conserved FOXO/DAF-16 longevity pathway.


Asunto(s)
Atracurio/uso terapéutico , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/metabolismo , Longevidad/genética , Receptores Colinérgicos/metabolismo , Animales , Atracurio/farmacología , Ratones
17.
J Intensive Care Soc ; 22(2): 120-126, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025751

RESUMEN

BACKGROUND: Delirium is a common complication of critical illness with a significant impact on patient morbidity and mortality. The Greater Manchester Critical Care Network established the Delirium Reduction Working Group in 2015. This article describes a region-wide delirium improvement project launched by that group. METHODS: Multiple Plan-Do-Study-Act cycles were undertaken. Cycle 1: April 2015 demonstrated only 48% of patients had a formal delirium screen. Following this a network-wide event took place and the Delirium Standards for the Greater Manchester Critical Care Network were produced. Cycle 2: May 2016 quarterly audits across the network monitored compliance against the agreed standards. Group events involved implementation of a delirium care bundle, sharing best practice, educating staff and providing guidance on the management of delirium. Cycle 3: November 2016 quarterly audit continued and a regional delirium study day was rolled out across the region. RESULTS: We have 14 different units across our network, all of which have participated in the audit. The first audit showed a delirium point prevalence of 28%, subsequent point prevalence audits demonstrated rates as low as 13%. There has also been an improvement in the use of delirium screening tools. In the first audit 37% of patients had two delirium screens in 24 h, this has increased to 60% in the latest audit. Improvements were also made in availability of sensory aids and pain assessments. CONCLUSION: The project has demonstrated the feasibility of delivering a coordinated delirium improvement project across multiple critical care units.

18.
FASEB J ; 35(4): e21456, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33724555

RESUMEN

Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.


Asunto(s)
NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Animales , Línea Celular , Supervivencia Celular , Células Epiteliales/efectos de los fármacos , Homeostasis , Humanos , Túbulos Renales , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , NAD/genética , Mononucleótido de Nicotinamida/química , Daño por Reperfusión
19.
Front Aging ; 2: 708680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822021

RESUMEN

Intervening in aging processes is hypothesized to extend healthy years of life and treat age-related disease, thereby providing great benefit to society. However, the ability to measure the biological aging process in individuals, which is necessary to test for efficacy of these interventions, remains largely inaccessible to the general public. Here we used NHANES physical activity accelerometer data from a wearable device and machine-learning algorithms to derive biological age predictions for individuals based on their movement patterns. We found that accelerated biological aging from our "MoveAge" predictor is associated with higher all-cause mortality. We further searched for nutritional or pharmacological compounds that associate with decelerated aging according to our model. A number of nutritional components peak in their association to decelerated aging later in life, including fiber, magnesium, and vitamin E. We additionally identified one FDA-approved drug associated with decelerated biological aging: the alpha-blocker doxazosin. We show that doxazosin extends healthspan and lifespan in C. elegans. Our work demonstrates how a biological aging score based on relative mobility can be accessible to the wider public and can potentially be used to identify and determine efficacy of geroprotective interventions.

20.
Front Cell Dev Biol ; 8: 594416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324647

RESUMEN

Since the identification and definition of the hallmarks of aging, these aspects of molecular and cellular decline have been most often described as isolated or distinct mechanisms. However, there is significant evidence demonstrating interplay between most of these hallmarks and that they have the capacity to influence and regulate one another. These interactions are demonstrable across the tree of life, yet not all aspects are conserved. Here, we describe an integrative view on the hallmarks of aging by using the hallmark "mitochondrial dysfunction" as a focus point, and illustrate its capacity to both influence and be influenced by the other hallmarks of aging. We discuss the effects of mitochondrial pathways involved in aging, such as oxidative phosphorylation, mitochondrial dynamics, mitochondrial protein synthesis, mitophagy, reactive oxygen species and mitochondrial DNA damage in relation to each of the primary, antagonistic and integrative hallmarks. We discuss the similarities and differences in these interactions throughout the tree of life, and speculate how speciation may play a role in the variation in these mechanisms. We propose that the hallmarks are critically intertwined, and that mapping the full extent of these interactions would be of significant benefit to the aging research community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA