Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Microbiol ; 119(2): 174-190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36577696

RESUMEN

Bordetella species cause lower respiratory tract infections in mammals. B. pertussis and B. bronchiseptica are the causative agents of whooping cough and kennel cough, respectively. The current acellular vaccine for B. pertussis protects against disease but does not prevent transmission or colonization. Cases of pertussis are on the rise even in areas of high vaccination. The PlrSR two-component system, is required for persistence in the mouse lung. A partial plrS deletion strain and a plrS H521Q strain cannot survive past 3 days in the lung, suggesting PlrSR works in a phosphorylation-dependent mechanism. We characterized the biochemistry of B. bronchiseptica PlrSR and found that both proteins function as a canonical two-component system. His521 was essential and Glu522 was critical for PlrS autophosphorylation. Asn525 was essential for phosphatase activity. The PAS domain was critical for both PlrS autophosphorylation and phosphatase activities. PlrS could both phosphotransfer to and exert phosphatase activity toward PlrR. Unexpectedly, PlrR formed a tetramer when unphosphorylated and a dimer upon phosphorylation. Finally, we demonstrated the importance of PlrS phosphatase activity for persistence within the murine lung. By characterizing PlrSR we hope to guide future in vivo investigation for development of new vaccines and therapeutics.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Tos Ferina , Ratones , Animales , Fosforilación , Bordetella pertussis , Sistema Respiratorio/microbiología , Monoéster Fosfórico Hidrolasas , Infecciones por Bordetella/microbiología , Mamíferos
2.
Elife ; 92020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33174837

RESUMEN

Although originally thought to be silent chromosomal regions, centromeres are instead actively transcribed. However, the behavior and contributions of centromere-derived RNAs have remained unclear. Here, we used single-molecule fluorescence in-situ hybridization (smFISH) to detect alpha-satellite RNA transcripts in intact human cells. We find that alpha-satellite RNA-smFISH foci levels vary across cell lines and over the cell cycle, but do not remain associated with centromeres, displaying localization consistent with other long non-coding RNAs. Alpha-satellite expression occurs through RNA polymerase II-dependent transcription, but does not require established centromere or cell division components. Instead, our work implicates centromere-nucleolar interactions as repressing alpha-satellite expression. The fraction of nucleolar-localized centromeres inversely correlates with alpha-satellite transcripts levels across cell lines and transcript levels increase substantially when the nucleolus is disrupted. The control of alpha-satellite transcripts by centromere-nucleolar contacts provides a mechanism to modulate centromere transcription and chromatin dynamics across diverse cell states and conditions.


Asunto(s)
Nucléolo Celular/genética , Centrómero/metabolismo , Satélite de ARN/genética , Transcripción Genética , Línea Celular , Nucléolo Celular/metabolismo , Centrómero/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Satélite de ARN/metabolismo
3.
Dev Cell ; 51(1): 35-48.e7, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31422918

RESUMEN

Centromeres provide a robust model for epigenetic inheritance as they are specified by sequence-independent mechanisms involving the histone H3-variant centromere protein A (CENP-A). Prevailing models indicate that the high intrinsic stability of CENP-A nucleosomes maintains centromere identity indefinitely. Here, we demonstrate that CENP-A is not stable at centromeres but is instead gradually and continuously incorporated in quiescent cells including G0-arrested tissue culture cells and prophase I-arrested oocytes. Quiescent CENP-A incorporation involves the canonical CENP-A deposition machinery but displays distinct requirements from cell cycle-dependent deposition. We demonstrate that Plk1 is required specifically for G1 CENP-A deposition, whereas transcription promotes CENP-A incorporation in quiescent oocytes. Preventing CENP-A deposition during quiescence results in significantly reduced CENP-A levels and perturbs chromosome segregation following the resumption of cell division. In contrast to quiescent cells, terminally differentiated cells fail to maintain CENP-A levels. Our work reveals that quiescent cells actively maintain centromere identity providing an indicator of proliferative potential.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Músculo Esquelético/metabolismo , Nucleosomas/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , División Celular , Línea Celular , Proliferación Celular , Centrómero/ultraestructura , Epigénesis Genética , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Meiosis , Ratones , Ratones Endogámicos C57BL , Oocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/metabolismo , Estrellas de Mar/metabolismo , Testículo/metabolismo , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...