Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 31(6): 949-961.e5, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37167970

RESUMEN

White blister rust, caused by the oomycete Albugo candida, is a widespread disease of Brassica crops. The Brassica relative Arabidopsis thaliana uses the paired immune receptor complex CSA1-CHS3/DAR4 to resist Albugo infection. The CHS3/DAR4 sensor NLR, which functions together with its partner, the helper NLR CSA1, carries an integrated domain (ID) with homology to DA1 peptidases. Using domain swaps with several DA1 homologs, we show that the LIM-peptidase domain of the family member CHS3/DAR4 functions as an integrated decoy for the family member DAR3, which interacts with and inhibits the peptidase activities of the three closely related peptidases DA1, DAR1, and DAR2. Albugo infection rapidly lowers DAR3 levels and activates DA1 peptidase activity, thereby promoting endoreduplication of host tissues to support pathogen growth. We propose that the paired immune receptor CSA1-CHS3/DAR4 detects the actions of a putative Albugo effector that reduces DAR3 levels, resulting in defense activation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Péptido Hidrolasas , Dominios Proteicos , Productos Agrícolas , Enfermedades de las Plantas
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047069

RESUMEN

Cerebrospinal fluid-based real-time quaking-induced conversion (CSF RT-QuIC) is currently the most prominent method for early detection of sporadic Creutzfeldt-Jakob disease (sCJD), the most common prion disease. CSF RT-QuIC delivers high sensitivity (>90%) and specificity (100%), which has been demonstrated by large ring-trial studies testing probable and definitive sCJD cohorts. Following the inclusion of CSF RT-QuIC in the revised European CJD Surveillance Network diagnostic criteria for sCJD, it has become a standard diagnostic procedure in many prion disease reference or surveillance centers around the world. In this study, we present the implementation of the second-generation CSF RT-QuIC (commonly known as Improved QuIC or IQ) at the Danish Reference Center for Prion Diseases (DRCPD). The method's sensitivity and specificity were evaluated and validated by analyzing 63 CSF samples. These 63 samples were also analyzed at the National CJD Research and Surveillance Unit (NCJDRSU), based at the University of Edinburgh, UK; analysis was carried out using the first generation or previous CSF RT-QuIC method (PQ). The sensitivity and specificity of PQ during tests at the NCJDRSU were 92% and 100%, respectively. Using these 63 CSF samples, the agreement between the two RT-QuIC generations at DRCPD and NCJDRSU prion laboratories was 100%.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Enfermedades por Prión/diagnóstico , Sensibilidad y Especificidad , Dinamarca
3.
Eur J Neurol ; 29(8): 2431-2438, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524506

RESUMEN

BACKGROUND AND PURPOSE: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) has a high degree of sensitivity and specificity for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) and this has led to its being included in revised European CJD Surveillance Network diagnostic criteria for sCJD. As CSF RT-QuIC becomes more widely established, it is crucial that the analytical performance of individual laboratories is consistent. The aim of this ring-trial was to ascertain the degree of concordance between European countries undertaking CSF RT-QuIC. METHODS: Ten identical CSF samples, seven from probable or neuropathologically confirmed sCJD and three from non-CJD cases, were sent to 13 laboratories from 11 countries for RT-QuIC analysis. A range of instrumentation and different recombinant prion protein substrates were used. Each laboratory analysed the CSF samples blinded to the diagnosis and reported the results as positive or negative. RESULTS: All 13 laboratories correctly identified five of the seven sCJD cases and the remaining two sCJD cases were identified by 92% of laboratories. Of the two sCJD cases that were not identified by all laboratories, one had a disease duration >26 months with a negative 14-3-3, whilst the remaining case had a 4-month disease duration and a positive 14-3-3. A single false positive CSF RT-QuIC result was observed in this study. CONCLUSIONS: This study shows that CSF RT-QuIC demonstrates an excellent concordance between centres, even when using a variety of instrumentation, recombinant prion protein substrates and CSF volumes. The adoption of CSF RT-QuIC by all CJD surveillance centres is recommended.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Proteínas Priónicas , Priones/líquido cefalorraquídeo , Proteínas Recombinantes , Sensibilidad y Especificidad
4.
Ann Clin Transl Neurol ; 7(11): 2262-2271, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33185334

RESUMEN

OBJECTIVE: Real-time quaking-induced conversion (RT-QuIC) assays detect prion-seeding activity in a variety of human biospecimens, including cerebrospinal fluid and olfactory mucosa swabs. The assay has shown high diagnostic accuracy in patients with prion disorders. Recently, advances in these tests have led to markedly improved diagnostic sensitivity and reduced assay times. Accordingly, an algorithm has been proposed that entails the use of RT-QuIC analysis of both sample types to diagnose sporadic Creutzfeldt-Jakob disease with nearly 100% accuracy. Here we present a multi-center evaluation (ring trial) of the reproducibility of these improved "second generation" RT-QuIC assays as applied to these diagnostic specimens. METHODS: Cerebrospinal fluid samples were analyzed from subjects with sporadic Creutzfeldt-Jakob (n = 55) or other neurological diseases (n = 45) at multiple clinical centers. Olfactory mucosa brushings collected by multiple otolaryngologists were obtained from nine sporadic Creutzfeldt-Jakob disease cases and 19 controls. These sample sets were initially tested blindly by RT-QuIC by a coordinating laboratory, recoded, and then sent to five additional testing laboratories for blinded ring trial testing. RESULTS: Unblinding of the results by a third party indicated 98-100% concordance between the results obtained by the testing of these cerebrospinal fluid and nasal brushings at the six laboratories. INTERPRETATION: This second-generation RT-QuIC assay is highly transferrable, reproducible, and therefore robust for the diagnosis of sporadic Creutzfeldt-Jakob disease in clinical practice.


Asunto(s)
Bioensayo/normas , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Técnicas de Diagnóstico Neurológico/normas , Mucosa Olfatoria/metabolismo , Priones/líquido cefalorraquídeo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
5.
Nature ; 588(7837): 277-283, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239791

RESUMEN

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Genómica , Internacionalidad , Fitomejoramiento/métodos , Triticum/genética , Aclimatación/genética , Animales , Centrómero/genética , Centrómero/metabolismo , Mapeo Cromosómico , Clonación Molecular , Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genes de Plantas/genética , Introgresión Genética , Haplotipos , Insectos/patogenicidad , Proteínas NLR/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Triticum/clasificación , Triticum/crecimiento & desarrollo
6.
BMC Plant Biol ; 20(1): 482, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092536

RESUMEN

BACKGROUND: The same species of plant can exhibit very diverse sizes and shapes of organs that are genetically determined. Characterising genetic variation underlying this morphological diversity is an important objective in evolutionary studies and it also helps identify the functions of genes influencing plant growth and development. Extensive screens of mutagenised Arabidopsis populations have identified multiple genes and mechanisms affecting organ size and shape, but relatively few studies have exploited the rich diversity of natural populations to identify genes involved in growth control. RESULTS: We screened a relatively well characterised collection of Arabidopsis thaliana accessions for variation in petal size. Association analyses identified sequence and gene expression variation on chromosome 4 that made a substantial contribution to differences in petal area. Variation in the expression of a previously uncharacterised gene At4g16850 (named as KSK) had a substantial role on variation in organ size by influencing cell size. Over-expression of KSK led to larger petals with larger cells and promoted the formation of stamenoid features. The expression of auxin-responsive genes known to limit cell growth was reduced in response to KSK over-expression. ANT expression was also reduced in KSK over-expression lines, consistent with altered floral identities. Auxin responses were reduced in KSK over-expressing cells, consistent with changes in auxin-responsive gene expression. KSK may therefore influence auxin responses during petal development. CONCLUSIONS: Understanding how genetic variation influences plant growth is important for both evolutionary and mechanistic studies. We used natural populations of Arabidopsis thaliana to identify sequence variation in a promoter region of Arabidopsis accessions that mediated differences in the expression of a previously uncharacterised membrane protein. This variation contributed to altered auxin responses and cell size during petal growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de la Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética
7.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32562491

RESUMEN

BACKGROUND: Polyploidy is centrally important in the evolution and domestication of plants because it leads to major genomic changes, such as altered patterns of gene expression, which are thought to underlie the emergence of new traits. Despite the common occurrence of these globally altered patterns of gene expression in polyploids, the mechanisms involved are not well understood. RESULTS: Using a precisely defined framework of highly conserved syntenic genes on hexaploid wheat chromosome 3DL and its progenitor 3 L chromosome arm of diploid Aegilops tauschii, we show that 70% of these gene pairs exhibited proportionately reduced gene expression, in which expression in the hexaploid context of the 3DL genes was ∼40% of the levels observed in diploid Ae tauschii. Several genes showed elevated expression during the later stages of grain development in wheat compared with Ae tauschii. Gene sequence and methylation differences probably accounted for only a few cases of differences in gene expression. In contrast, chromosome-wide patterns of reduced chromatin accessibility of genes in the hexaploid chromosome arm compared with its diploid progenitor were correlated with both reduced gene expression and the imposition of new patterns of gene expression. CONCLUSIONS: Our pilot-scale analyses show that chromatin compaction may orchestrate reduced gene expression levels in the hexaploid chromosome arm of wheat compared to its diploid progenitor chromosome arm.


Asunto(s)
Aegilops/genética , Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Ploidias , Triticum/genética , Cromatina/metabolismo , Biología Computacional/métodos , Metilación de ADN , Evolución Molecular , Genoma de Planta , Genómica/métodos , Seudogenes
8.
Plant Cell ; 31(10): 2370-2385, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31439805

RESUMEN

Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola (Brassica napus) accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene BnaUPL3 C03 made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of BnaUPL3 C03 expression. We defined a mechanism in which UPL3 mediated the proteasomal degradation of LEC2, a master transcriptional regulator of seed maturation. Accessions with reduced UPL3 expression had increased LEC2 protein levels, larger seeds, and prolonged expression of lipid biosynthetic genes during seed maturation. Natural variation in BnaUPL3 C03 expression appears not to have been exploited in current B napus breeding lines and could therefore be used as a new approach to maximize future yields in this important oil crop.


Asunto(s)
Brassica napus/metabolismo , Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/enzimología , Brassica napus/genética , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio/metabolismo , Ligasas/genética , Ligasas/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Mutación , Fenotipo , Mucílago de Planta/biosíntesis , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Aceite de Brassica napus/metabolismo , Semillas/química , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Transcriptoma/genética , Ubiquitina-Proteína Ligasas/genética
9.
J Neuropathol Exp Neurol ; 77(8): 673-684, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29889261

RESUMEN

This is the first report of presumed sporadic Creutzfeldt-Jakob disease (sCJD) and Gerstmann-Sträussler-Scheinker disease (GSS) with the prion protein gene c.305C>T mutation (p.P102L) occurring in one family. The father and son were affected with GSS and the mother had a rapidly progressive form of CJD. Diagnosis of genetic, variant, and iatrogenic CJD was ruled out based on the mother's clinical history, genetic tests, and biochemical investigations, all of which supported the diagnosis of sCJD. However, given the low incidence of sCJD and GSS, their co-occurrence in one family is extraordinary and challenging. Thus, a hypothesis for the transmission of infectious prion proteins (PrPSc) via microchimerism was proposed and investigated. DNA from 15 different brain regions and plasma samples of the CJD patient was subjected to PCR and shallow sequencing for detection of a male sex-determining chromosome Y (chr. Y). However, no trace of chr. Y was found. A long CJD incubation period or presumed small concentrations of chr. Y may explain the obtained results. Further studies of CJD and GSS animal models with controlled genetic and proteomic features are needed to determine whether maternal CJD triggered via microchimerism by a GSS fetus might present a new PrPSc transmission route.


Asunto(s)
Quimerismo , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/transmisión , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/transmisión , Proteínas Priónicas/genética , Anciano , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Humanos , Masculino , Persona de Mediana Edad , Linaje , Esposos
10.
Gigascience ; 7(5)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29762659

RESUMEN

Background: The accurate sequencing and assembly of very large, often polyploid, genomes remains a challenging task, limiting long-range sequence information and phased sequence variation for applications such as plant breeding. The 15-Gb hexaploid bread wheat (Triticum aestivum) genome has been particularly challenging to sequence, and several different approaches have recently generated long-range assemblies. Mapping and understanding the types of assembly errors are important for optimising future sequencing and assembly approaches and for comparative genomics. Results: Here we use a Fosill 38-kb jumping library to assess medium and longer-range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent Bacterial Artificial Chromosome (BAC)-based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid Single Molecule Real Time (SMRT-PacBio) and short read (Illumina) assembly were carried out. We revealed a surprising scale and variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a 3-fold increase in N50 values. Conclusions: Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies based solely on Illumina sequences are significantly more accurate by all measures compared to BAC-based chromosome-scale assemblies and hybrid SMRT-Illumina approaches. Although current whole genome assemblies are reasonably accurate and useful, additional improvements will be needed to generate complete assemblies of wheat genomes using open-source, computationally efficient, and cost-effective methods.


Asunto(s)
Biblioteca de Genes , Genoma de Planta , Análisis de Secuencia de ADN/métodos , Triticum/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Mapeo Contig
11.
Sci Rep ; 7(1): 10655, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878311

RESUMEN

An early and accurate in vivo diagnosis of rapidly progressive dementia remains challenging, despite its critical importance for the outcome of treatable forms, and the formulation of prognosis. Real-Time Quaking-Induced Conversion (RT-QuIC) is an in vitro assay that, for the first time, specifically discriminates patients with prion disease. Here, using cerebrospinal fluid (CSF) samples from 239 patients with definite or probable prion disease and 100 patients with a definite alternative diagnosis, we compared the performance of the first (PQ-CSF) and second generation (IQ-CSF) RT-QuIC assays, and investigated the diagnostic value of IQ-CSF across the broad spectrum of human prions. Our results confirm the high sensitivity of IQ-CSF for detecting human prions with a sub-optimal sensitivity for the sporadic CJD subtypes MM2C and MM2T, and a low sensitivity limited to variant CJD, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. While we found no difference in specificity between PQ-CSF and IQ-CSF, the latter showed a significant improvement in sensitivity, allowing prion detection in about 80% of PQ-CSF negative CJD samples. Our results strongly support the implementation of IQ-CSF in clinical practice. By rapidly confirming or excluding CJD with high accuracy the assay is expected to improve the outcome for patients and their enrollment in therapeutic trials.


Asunto(s)
Bioensayo , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Priones/líquido cefalorraquídeo , Proteínas 14-3-3/líquido cefalorraquídeo , Bioensayo/métodos , Síndrome de Creutzfeldt-Jakob/genética , Humanos , Proteínas PrPSc/líquido cefalorraquídeo , Sensibilidad y Especificidad , Proteínas tau/líquido cefalorraquídeo
12.
Genome Res ; 27(5): 885-896, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28420692

RESUMEN

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.


Asunto(s)
Mapeo Contig/métodos , Genoma de Planta , Anotación de Secuencia Molecular/métodos , Proteínas de Plantas/genética , Translocación Genética , Triticum/genética , Algoritmos , Mapeo Contig/normas , Anotación de Secuencia Molecular/normas , Polimorfismo Genético , Poliploidía
13.
Genes Dev ; 31(2): 197-208, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167503

RESUMEN

The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas con Dominio LIM/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferación Celular , Activación Enzimática , Proteínas con Dominio LIM/genética , Estabilidad Proteica
14.
J Cardiothorac Vasc Anesth ; 31(4): 1174-1182, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28159523

RESUMEN

OBJECTIVE: Peripheral nerve injury (PNI) is a common and potentially devastating complication in cardiac surgery. Somatosensory evoked potential (SSEP) monitoring is one of the modalities for PNI; however, its application is limited by complicated logistics. This study aimed to assess the feasibility of using a novel, automated SSEP device (EPAD; SafeOp Surgical, Hunt Valley, MD) for detection of intraoperative PNI during cardiac surgery. DESIGN: Prospective, observational study. SETTING: Single university hospital. PARTICIPANTS: Cardiac surgical patients. INTERVENTIONS: After Ethics Board approval and written consent, study participants were monitored using the EPAD automated SSEP device during cardiac surgery. All patients with prolonged and abnormal SSEP changes were evaluated postoperatively, and if they were symptomatic, they were referred for further nerve conduction and electromyographic assessment. MEASUREMENTS AND MAIN RESULTS: Of the 43 patients who consented to study inclusion, 33 were monitored successfully. With increasing clinical experience the authors encountered minimal technical issues, and satisfactory signals were obtained in most patients. Abnormal SSEP signal changes, which were encountered in 5 (15.2%) patients, were interpreted as impending PNI; 3 patients experienced prolonged signal changes (>1 h), and 2 (6.1%) of these developed symptomatic peripheral neuropathy that was confirmed with nerve conduction studies. CONCLUSIONS: The EPAD automated SSEP device is a viable option for detecting PNI during cardiac surgery. A high incidence of intraoperative peripheral nerve compromise and a 6.1% incidence of postoperative peripheral neuropathy were observed. This study reports the clinical feasibility of using the EPAD automated SSEP device; additional studies are required to evaluate the diagnostic test accuracy and the outcome benefit of routine SSEP monitoring in cardiac surgical patients.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Potenciales Evocados Somatosensoriales/fisiología , Monitorización Neurofisiológica Intraoperatoria/métodos , Traumatismos de los Nervios Periféricos/diagnóstico , Traumatismos de los Nervios Periféricos/fisiopatología , Anciano , Estudios de Factibilidad , Femenino , Humanos , Monitorización Neurofisiológica Intraoperatoria/instrumentación , Masculino , Persona de Mediana Edad , Traumatismos de los Nervios Periféricos/etiología , Estudios Prospectivos
15.
GeoResJ ; 14(9): 1-19, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32864337

RESUMEN

Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases. Thousands of soil survey reports and maps have been scanned and made available online. The soil profile data reported by these data sources have been captured and compiled into databases. The total number of soil profiles rescued in the selected countries is about 800,000. Currently, data for 117, 000 profiles are compiled and harmonized according to GlobalSoilMap specifications in a world level database (WoSIS). The results presented at the country level are likely to be an underestimate. The majority of soil data is still not rescued and this effort should be pursued. The data have been used to produce soil property maps. We discuss the pro and cons of top-down and bottom-up approaches to produce such maps and we stress their complementarity. We give examples of success stories. The first global soil property maps using rescued data were produced by a top-down approach and were released at a limited resolution of 1km in 2014, followed by an update at a resolution of 250m in 2017. By the end of 2020, we aim to deliver the first worldwide product that fully meets the GlobalSoilMap specifications.

16.
BMC Plant Biol ; 15: 215, 2015 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-26341899

RESUMEN

BACKGROUND: Plant cell walls are dynamic structures involved in all aspects of plant growth, environmental interactions and defense responses, and are the most abundant renewable source of carbon-containing polymers on the planet. To balance rigidity and extensibility, the composition and integrity of cell wall components need to be tightly regulated, for example during cell elongation. RESULTS: We show that mutations in the MED25/PFT1 and MED8 subunits of the Mediator transcription complex suppressed the sugar-hypersensitive hypocotyl elongation phenotype of the hsr8-1 mutant, which has cell wall defects due to arabinose deficiency that do not permit normal cell elongation. This suppression occurred independently of light and jasmonic acid (JA) signaling. Gene expression analyses revealed that the expression of genes induced in hsr8-1 that encode enzymes and proteins that are involved in cell expansion and cell wall strengthening is reduced in the pft1-2 mutant line, and the expression of genes encoding transcription factors involved in reducing hypocotyl cell elongation, genes encoding cell wall associated enzymes and proteins is up-regulated in pft1-2. PFT1 was also required for the expression of several glucose-induced genes, including those encoding cell wall components and enzymes, regulatory and enzymatic components of anthocyanin biosynthesis, and flavonoid and glucosinolate biosynthetic pathways. CONCLUSIONS: These results establish that MED25 and MED8 subunits of the Mediator transcriptional complex are required for the transcriptional regulation of genes involved in cell elongation and cell wall composition in response to defective cell walls and in sugar- responsive gene expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabinosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Complejo Mediador/genética , Proteínas Nucleares/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Proteínas de Unión al ADN , Hipocótilo/genética , Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo
17.
CMAJ ; 187(3): 208, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25691798
18.
Nature ; 491(7426): 705-10, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23192148

RESUMEN

Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.


Asunto(s)
Pan , Genoma de Planta/genética , Triticum/genética , Brachypodium/genética , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , ADN Complementario/genética , ADN de Plantas/genética , Evolución Molecular , Genes de Plantas/genética , Genómica , Familia de Multigenes/genética , Oryza/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Seudogenes/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Triticum/clasificación , Zea mays/genética
19.
Plant Biotechnol J ; 9(9): 1086-99, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21627760

RESUMEN

Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza.


Asunto(s)
Ligamiento Genético , Polimorfismo de Nucleótido Simple , Poliploidía , Triticum/genética , Alelos , Biomarcadores/análisis , Mapeo Cromosómico , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Genotipo , Reacción en Cadena de la Polimerasa/métodos , Alineación de Secuencia
20.
PLoS One ; 5(10): e13461, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20976139

RESUMEN

The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent validation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation.


Asunto(s)
Genes de Plantas , Poaceae/genética , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Hibridación Fluorescente in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...