Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0297623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483922

RESUMEN

Deformed wing virus (DWV) was first detected in dead honey bees in 1982 but has been in honey bees for at least 300 years. Due to its high prevalence and virulence, they have been linked with the ongoing decline in honey bee populations worldwide. A rapid, simple, semi-automated, high-throughput, and cost-effective method of screening colonies for viruses would benefit bee research and the beekeeping industry. Here we describe a semi-automated approach that combines an RNA-grade liquid homogenizer followed by magnetic bead capture for total virus nucleic acid extraction. We compare it to the more commonly applied nucleic acid column-based purification method and use qPCR plus Oxford Nanopore Technologies sequencing to evaluate the accuracy of analytical results for both methods. Our results showed high reproducibility and accuracy for both approaches. The semi-automated method described here allows for faster screening of viral loads in units of 96 samples at a time. We developed this method to monitor viral loads in honey bee colonies, but it could be easily applied for any PCR or genomic-based screening assays.


Asunto(s)
Ácidos Nucleicos , Virus ARN , Virus , Abejas , Animales , Reproducibilidad de los Resultados , Virus/genética , Virus ARN/genética
2.
Viruses ; 15(12)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140573

RESUMEN

Phaeoviruses (Phycodnaviridae) are large icosahedral viruses in the phylum Nucleocytoviricota with dsDNA genomes ranging from 160 to 560 kb, infecting multicellular brown algae (Phaeophyceae). The phaeoviral host range is broader than expected, not only infecting algae from the Ectocarpales but also from the Laminariales order. However, despite phaeoviral infections being reported globally, Norwegian kelp species have not been screened. A molecular analysis of cultured and wild samples of two economically important kelp species in Norway (Saccharina latissima and Laminaria hyperborea) revealed that phaeoviruses are recurrently present along the Norwegian coast. We found the viral prevalence in S. latissima to be significantly higher at the present time compared to four years ago. We also observed regional differences within older samples, in which infections were significantly lower in northern areas than in the south or the fjords. Moreover, up to three different viral sequences were found in the same algal individual, one of which does not belong to the Phaeovirus genus and has never been reported before. This master variant therefore represents a putative new member of an unclassified phycodnavirus genus.


Asunto(s)
Kelp , Phaeophyceae , Phycodnaviridae , Noruega/epidemiología , Phycodnaviridae/genética
3.
Viruses ; 10(8)2018 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-30081590

RESUMEN

Two sister orders of the brown macroalgae (class Phaeophyceae), the morphologically complex Laminariales (commonly referred to as kelp) and the morphologically simple Ectocarpales are natural hosts for the dsDNA phaeoviruses (family Phycodnaviridae) that persist as proviruses in the genomes of their hosts. We have previously shown that the major capsid protein (MCP) and DNA polymerase concatenated gene phylogeny splits phaeoviruses into two subgroups, A and B (both infecting Ectocarpales), while MCP-based phylogeny suggests that the kelp phaeoviruses form a distinct third subgroup C. Here we used MCP to better understand the host range of phaeoviruses by screening a further 96 and 909 samples representing 11 and 3 species of kelp and Ectocarpales, respectively. Sporophyte kelp samples were collected from their various natural coastal habitats spanning five continents: Africa, Asia, Australia, Europe, and South America. Our phylogenetic analyses showed that while most of the kelp phaeoviruses, including one from Macrocystispyrifera, belonged to the previously designated subgroup C, new lineages of Phaeovirus in 3 kelp species, Ecklonia maxima, Ecklonia radiata, Undaria pinnatifida, grouped instead with subgroup A. In addition, we observed a prevalence of 26% and 63% in kelp and Ectocarpales, respectively. Although not common, multiple phaeoviral infections per individual were observed, with the Ectocarpales having both intra- and inter-subgroup phaeoviral infections. Only intra-subgroup phaeoviral infections were observed in kelp. Furthermore, prevalence of phaeoviral infections within the Ectocarpales is also linked to their exposure to waves. We conclude that phaeoviral infection is a widely occurring phenomenon in both lineages, and that phaeoviruses have diversified with their hosts at least since the divergence of the Laminariales and Ectocarpales.


Asunto(s)
Kelp/virología , Macrocystis/virología , Phycodnaviridae/clasificación , Undaria/virología , Virosis/virología , Asia , Australia , Proteínas de la Cápside/genética , ADN Polimerasa Dirigida por ADN , Ecosistema , Europa (Continente) , Océanos y Mares , Phycodnaviridae/aislamiento & purificación , Filogenia , Provirus/genética , Provirus/fisiología , América del Sur , Latencia del Virus
4.
ISME J ; 11(12): 2869-2873, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28742072

RESUMEN

Phaeoviruses are latent double-stranded DNA viruses that insert their genomes into those of their brown algal (Phaeophyceae) hosts. So far these viruses are known only from members of the Ectocarpales, which are small and short-lived macroalgae. Here we report molecular and morphological evidence for a new Phaeovirus cluster, referred to as sub-group C, infecting kelps (Laminariales) of the genera Laminaria and Saccharina, which are ecologically and commercially important seaweeds. Epifluorescence and TEM observations indicate that the Laminaria digitata Virus (LdigV), the type species of sub-group C, targets the host nucleus for its genome replication, followed by gradual degradation of the chloroplast and assembly of virions in the cytoplasm of both vegetative and reproductive cells. This study is the first to describe phaeoviruses in kelp. In the field, these viruses infected two thirds of their host populations; however, their biological impact remains unknown.


Asunto(s)
Virus ADN/aislamiento & purificación , Kelp/virología , Algas Marinas/virología , Virus ADN/clasificación , Virus ADN/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA