Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 55(4): 693-705, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012455

RESUMEN

H3K4me1 methyltransferases MLL3 (KMT2C) and MLL4 (KMT2D) are critical for enhancer activation, cell differentiation and development. However, roles of MLL3/4 enzymatic activities and MLL3/4-mediated enhancer H3K4me1 in these processes remain unclear. Here we report that constitutive elimination of both MLL3 and MLL4 enzymatic activities prevents initiation of gastrulation and leads to early embryonic lethality in mice. However, selective elimination of MLL3/4 enzymatic activities in embryonic, but not extraembryonic, lineages leaves gastrulation largely intact. Consistent with this, embryonic stem cells (ESCs) lacking MLL3/4 enzymatic activities can differentiate toward the three embryonic germ layers but show aberrant differentiation to extraembryonic endoderm (ExEn) and trophectoderm. The failure in ExEn differentiation can be attributed to markedly reduced enhancer-binding of the lineage-determining transcription factor GATA6. Furthermore, we show that MLL3/4-catalyzed H3K4me1 is largely dispensable for enhancer activation during ESC differentiation. Together, our findings suggest a lineage-selective, but enhancer activation-independent, role of MLL3/4 methyltransferase activities in early embryonic development and ESC differentiation.


Asunto(s)
Desarrollo Embrionario , N-Metiltransferasa de Histona-Lisina , Animales , Ratones , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Células Madre Embrionarias , N-Metiltransferasa de Histona-Lisina/genética
2.
Nat Commun ; 12(1): 1630, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712604

RESUMEN

Cell type-specific enhancers are activated by coordinated actions of lineage-determining transcription factors (LDTFs) and chromatin regulators. The SWI/SNF chromatin remodeling complex BAF and the histone H3K4 methyltransferase MLL4 (KMT2D) are both implicated in enhancer activation. However, the interplay between BAF and MLL4 in enhancer activation remains unclear. Using adipogenesis as a model system, we identify BAF as the major SWI/SNF complex that colocalizes with MLL4 and LDTFs on active enhancers and is required for cell differentiation. In contrast, the promoter enriched SWI/SNF complex PBAF is dispensable for adipogenesis. By depleting BAF subunits SMARCA4 (BRG1) and SMARCB1 (SNF5) as well as MLL4 in cells, we show that BAF and MLL4 reciprocally regulate each other's binding on active enhancers before and during adipogenesis. By focusing on enhancer activation by the adipogenic pioneer transcription factor C/EBPß without inducing cell differentiation, we provide direct evidence for an interdependent relationship between BAF and MLL4 in activating cell type-specific enhancers. Together, these findings reveal a positive feedback between BAF and MLL4 in promoting LDTF-dependent activation of cell type-specific enhancers.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Adipogénesis/genética , Animales , Diferenciación Celular , Cromatina , Ensamble y Desensamble de Cromatina , ADN Helicasas , Regulación de la Expresión Génica , Histonas/metabolismo , Ratones , Proteínas Nucleares , Regiones Promotoras Genéticas , Proteína SMARCB1 , Factores de Transcripción
3.
Aging (Albany NY) ; 12(2): 1725-1746, 2020 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-31983693

RESUMEN

Aging, like obesity, is associated with metabolic and inflammatory alterations within adipose tissue in older individuals. Younger females are protected from adipose inflammation, but older post-menopausal females exhibit exaggerated visceral adiposity correlated with increased disease risk. Obesity accelerates the onset and progression of age-associated diseases, but it is unclear if aging and obesity drive adipose tissue dysfunction in a sexually dimorphic fashion. We investigated adipose tissue metabolism and inflammation in a diet-induced obesity model in young and old mice. We identified age related sex differences in adipose tissue macrophages (ATMs), fibrosis and lipid metabolism in male and female visceral fat depot (GWAT). Although aging normalized body weights between the sexes, females remained protected from proinflammatory ATMs and stimulated lipolysis failed to adversely affect the inflammatory state even with obesity. Older obese males had augmented CD11c+ ATMs and higher insulin levels, while females showed increased visceral adiposity and exaggerated Pparγ, and Pgc1α expression. Obesity in aging demonstrated similar expression of GWAT p53, p16, p21, Timp1 and Tgfß1 in both sexes. Our studies suggest that even with aging, female GWAT shows an attenuated inflammatory response compared to males due to an efficient oxidative metabolism combined with an active tissue remodeling state.


Asunto(s)
Adaptación Fisiológica , Tejido Adiposo/metabolismo , Envejecimiento/metabolismo , Metabolismo Energético , Obesidad/metabolismo , Tejido Adiposo/patología , Adiposidad , Factores de Edad , Animales , Biomarcadores/metabolismo , Senescencia Celular , Dieta Alta en Grasa , Matriz Extracelular/metabolismo , Femenino , Fibrosis , Inmunohistoquímica , Grasa Intraabdominal/metabolismo , Metabolismo de los Lípidos , Lipólisis , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Factores Sexuales
4.
Endocrinology ; 160(2): 293-312, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544158

RESUMEN

Males are known to have profound adipose tissue macrophage (ATM) accumulation in gonadal white adipose tissue (GWAT) during obesity, whereas females are protected from such an inflammatory response even with increased adiposity. The inflammatory tone in males is linked to insulin resistance and might be the underlying cause for sex differences in metabolic disease. Factors regulating the meta-inflammatory response remain unclear but enhanced lipid storage in females may explain the reduced inflammatory response to high-fat diets. In this study, we evaluated lean and obese females with stimulated lipolysis to understand whether a stress release of free fatty acids (FFAs) could induce female ATMs. We demonstrate that in both lean and obese females, GWAT CD11c- resident ATMs accumulate with ß-3 adrenergic receptor-stimulated lipolysis. Lipolysis elevated serum FFA, triglyceride, and IL-6 levels in females that corresponded to significant phosphorylated hormone-sensitive lipase and adipose triglyceride lipase protein expression in obese female GWAT compared with males. Increased lipolytic response in obese females was associated with crown-like structures and induced Il6, Mcp1, Arg1, and Mgl1 expression in obese female GWAT, suggesting an environment of lipid clearance and adipose remodeling. With this finding we next investigated whether lipid storage and lipolytic mediators differed by sex. Diacylglycerol, ceramides, phospholipids, and certain fatty acid species associated with inflammation were elevated in male GWAT compared with obese female GWAT. Overall, our data demonstrate a role for GWAT lipid storage and lipolytic metabolites to induce inflammation in males and induce remodeling in females that might explain sex differences in overall metabolic health.


Asunto(s)
Tejido Adiposo/inmunología , Lipólisis , Obesidad/inmunología , Caracteres Sexuales , Animales , Dieta Alta en Grasa , Femenino , Lipasa/metabolismo , Macrófagos , Masculino , Ratones Endogámicos C57BL , Receptores Adrenérgicos beta 3/metabolismo , Esterol Esterasa/metabolismo , Activación Transcripcional
5.
J Biol Chem ; 293(23): 8775-8786, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29636416

RESUMEN

Obesity-induced chronic inflammation is associated with metabolic disease. Results from mouse models utilizing a high-fat diet (HFD) have indicated that an increase in activated macrophages, including CD11c+ adipose tissue macrophages (ATMs), contributes to insulin resistance. Obesity primes myeloid cell production from hematopoietic stem cells (HSCs) and Toll-like receptor 4 (TLR4), and the downstream TIR domain-containing adapter protein-inducing interferon-ß (TRIF)- and MyD88-mediated pathways regulate production of similar myeloid cells after lipopolysaccharide stimulation. However, the role of these pathways in HFD-induced myelopoiesis is unknown. We hypothesized that saturated fatty acids and HFD alter myelopoiesis by activating TLR4 pathways in HSCs, differentially producing pro-inflammatory CD11c+ myeloid cells that contribute to obesity-induced metabolic disease. Results from reciprocal bone marrow transplants (BMTs) with Tlr4-/- and WT mice indicated that TLR4 is required for HFD-induced myelopoiesis and production of CD11c+ ATMs. Experiments with homozygous knockouts of Irakm (encoding a suppressor of MyD88 inactivation) and Trif in competitive BMTs revealed that MyD88 is required for HFD expansion of granulocyte macrophage progenitors and that Trif is required for pregranulocyte macrophage progenitor expansion. A comparison of WT, Tlr4-/-, Myd88-/-, and Trif-/- mice on HFD demonstrated that TLR4 plays a role in the production of CD11c+ ATMs, and both Myd88-/- and Trif-/- mice produced fewer ATMs than WT mice. Moreover, HFD-induced TLR4 activation inhibited macrophage proliferation, leading to greater accumulation of recruited CD11c+ ATMs. Our results indicate that HFD potentiates TLR4 and both its MyD88- and TRIF-mediated downstream pathways within progenitors and adipose tissue and leads to macrophage polarization.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Antígeno CD11c/inmunología , Macrófagos/patología , Factor 88 de Diferenciación Mieloide/inmunología , Mielopoyesis , Obesidad/patología , Receptor Toll-Like 4/inmunología , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa/efectos adversos , Inflamación/etiología , Inflamación/inmunología , Inflamación/patología , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Obesidad/etiología , Obesidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...