Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 15, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166627

RESUMEN

The sacred datura plant (Solanales: Solanaceae: Datura wrightii) has been used to study plant-herbivore interactions for decades. The wealth of information that has resulted leads it to have potential as a model system for studying the ecological and evolutionary genomics of these interactions. We present a de novo Datura wrightii genome assembled using PacBio HiFi long-reads. Our assembly is highly complete and contiguous (N50 = 179Mb, BUSCO Complete = 97.6%). We successfully detected a previously documented ancient whole genome duplication using our assembly and have classified the gene duplication history that generated its coding sequence content. We use it as the basis for a genome-guided differential expression analysis to identify the induced responses of this plant to one of its specialized herbivores (Coleoptera: Chrysomelidae: Lema daturaphila). We find over 3000 differentially expressed genes associated with herbivory and that elevated expression levels of over 200 genes last for several days. We also combined our analyses to determine the role that different gene duplication categories have played in the evolution of Datura-herbivore interactions. We find that tandem duplications have expanded multiple functional groups of herbivore responsive genes with defensive functions, including UGT-glycosyltranserases, oxidoreductase enzymes, and peptidase inhibitors. Overall, our results expand our knowledge of herbivore-induced plant transcriptional responses and the evolutionary history of the underlying herbivore-response genes.


Asunto(s)
Escarabajos , Datura , Animales , Herbivoria , Duplicación de Gen , Datura/genética , Datura/metabolismo , Escarabajos/genética
2.
Plant Cell ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824826

RESUMEN

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

3.
Methods Mol Biol ; 2545: 91-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36720809

RESUMEN

Nearly all lineages of land plants have experienced at least one whole-genome duplication (WGD) in their history. The legacy of these ancient WGDs is still observable in the diploidized genomes of extant plants. Genes originating from WGD-paleologs-can be maintained in diploidized genomes for millions of years. These paleologs have the potential to shape plant evolution through sub- and neofunctionalization, increased genetic diversity, and reciprocal gene loss among lineages. Current methods for classifying paleologs often rely on only a subset of potential genomic features, have varying levels of accuracy, and often require significant data and/or computational time. Here, we developed a supervised machine learning approach to classify paleologs from a target WGD in diploidized genomes across a broad range of different duplication histories. We collected empirical data on syntenic block sizes and other genomic features from 27 plant species each with a different history of paleopolyploidy. Features from these genomes were used to develop simulations of syntenic blocks and paleologs to train a gradient boosted decision tree. Using this approach, Frackify (Fractionation Classify), we were able to accurately identify and classify paleologs across a broad range of parameter space, including cases with multiple overlapping WGDs. We then compared Frackify with other paleolog inference approaches in six species with paleotetraploid and paleohexaploid ancestries. Frackify provides a way to combine multiple genomic features to quickly classify paleologs while providing a high degree of consistency with existing approaches.


Asunto(s)
Duplicación de Gen , Aprendizaje Automático , Aprendizaje Automático Supervisado , Genómica , Fraccionamiento Químico
4.
Nat Plants ; 8(9): 1038-1051, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36050461

RESUMEN

The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.


Asunto(s)
Helechos , Elementos Transponibles de ADN , Evolución Molecular , Helechos/genética , Genoma de Planta , Plantas/genética
5.
Annu Rev Plant Biol ; 72: 387-410, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33684297

RESUMEN

Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.


Asunto(s)
Embryophyta , Genoma de Planta , Animales , Evolución Molecular , Plantas/genética , Poliploidía
6.
New Phytol ; 230(1): 372-386, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33452818

RESUMEN

Many crops are polyploid or have a polyploid ancestry. Recent phylogenetic analyses have found that polyploidy often preceded the domestication of crop plants. One explanation for this observation is that increased genetic diversity following polyploidy may have been important during the strong artificial selection that occurs during domestication. In order to test the connection between domestication and polyploidy, we identified and examined candidate genes associated with the domestication of the diverse crop varieties of Brassica rapa. Like all 'diploid' flowering plants, B. rapa has a diploidized paleopolyploid genome and experienced many rounds of whole genome duplication (WGD). We analyzed transcriptome data of more than 100 cultivated B. rapa accessions. Using a combination of approaches, we identified > 3000 candidate genes associated with the domestication of four major B. rapa crop varieties. Consistent with our expectation, we found that the candidate genes were significantly enriched with genes derived from the Brassiceae mesohexaploidy. We also observed that paleologs were significantly more diverse than non-paleologs. Our analyses find evidence for that genetic diversity derived from ancient polyploidy played a key role in the domestication of B. rapa and provide support for its importance in the success of modern agriculture.


Asunto(s)
Brassica rapa , Domesticación , Brassica rapa/genética , Genoma de Planta/genética , Filogenia , Poliploidía
7.
PeerJ ; 6: e5682, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425882

RESUMEN

Hemiparasitic plants increase plant biodiversity by reducing the abundance of dominant plant species, allowing for the establishment of subordinate species. Hemiparasites reduce host resources by directly removing nutrients from hosts, competing for light and space, and may indirectly reduce host resources by disrupting plant associations with symbiotic root fungi, like arbuscular mycorrhizal fungi and dark-septate endophytes. Here, we explored how a generalist hemiparasite, Castilleja, influences plant richness, evenness, community composition, and mycorrhizal colonization patterns across a ∼1,000 m elevational gradient in the North American Rocky Mountains. We hypothesized that the presence of Castilleja would be associated with increased plant richness and evenness, shaping plant community composition, and would reduce mycorrhizal colonization within dominant plant taxa. However, the magnitude of the effects would be contingent upon climate contexts, that is, elevation. Overall, we found that the presence of Castilleja was associated with an 11% increase in plant richness and a 5% increase in plant evenness, regardless of elevation. However, we found that the presence of Castilleja influenced plant composition at only two of the five sites and at the remaining three of five sites, plot pairing was the only predictor that influenced composition. Additionally, we found that the presence of Castilleja reduced mycorrhizal fungal colonization within dominant plant species by ∼20%, regardless of elevation. Taken together, our results suggest that hemiparasites regulate plant diversity, evenness, and interactions with mycorrhizal fungi independent of abiotic and biotic contexts occurring at the site, although overall effect on community composition is likely driven by site-level factors.

8.
Health Informatics J ; 12(3): 187-98, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17023407

RESUMEN

Computerized provider order entry (CPOE) and clinical decision support improve medication prescribing safety in adults. However, effective therapy for children requires dosing based on circulating medication levels. We examined the introduction of a computerized corollary order for aminoglycoside blood level monitoring. The study was divided into baseline (BP) and corollary order (CP) periods. In the CP, we implemented a workflow-integrated reminder to order blood levels and presented this to the clinician during each aminoglycoside ordering session. Appropriate laboratory monitoring was 128/159 (80.5%) courses in the BP and 146/177 (82.5%) courses in the CP. Thus introduction of the order did not significantly improve laboratory monitoring rates, nor did it result in a reduction in the rate of either toxic or subtherapeutic levels. However, aminoglycoside corollary orders may have an important role in institutions where pharmacists are not actively involved in monitoring therapy.


Asunto(s)
Aminoglicósidos/análisis , Sistemas de Entrada de Órdenes Médicas/organización & administración , Programas Informáticos , Aminoglicósidos/sangre , Hospitales Pediátricos , Humanos , Errores de Medicación/prevención & control , Ohio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...