Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 26(4): 571-583.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30799222

RESUMEN

Eeyarestatin 1 (ES1) inhibits p97-dependent protein degradation, Sec61-dependent protein translocation into the endoplasmic reticulum (ER), and vesicular transport within the endomembrane system. Here, we show that ES1 impairs Ca2+ homeostasis by enhancing the Ca2+ leakage from mammalian ER. A comparison of various ES1 analogs suggested that the 5-nitrofuran (5-NF) ring of ES1 is crucial for this effect. Accordingly, the analog ES24, which conserves the 5-NF domain of ES1, selectively inhibited protein translocation into the ER, displayed the highest potency on ER Ca2+ leakage of ES1 analogs studied and induced Ca2+-dependent cell death. Using small interfering RNA-mediated knockdown of Sec61α, we identified Sec61 complexes as the targets that mediate the gain of Ca2+ leakage induced by ES1 and ES24. By interacting with the lateral gate of Sec61α, ES1 and ES24 likely capture Sec61 complexes in a Ca2+-permeable, open state, in which Sec61 complexes allow Ca2+ leakage but are translocation incompetent.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Canales de Translocación SEC/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Hidroxiurea/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos
2.
Ann Clin Biochem ; 54(3): 362-369, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27422134

RESUMEN

Background Patients with metal-on-metal hip replacements require testing for cobalt and chromium. There may also be a need to test for titanium, which is used in the construction of the femoral stem in total hip replacements. It is not possible to use quadrupole inductively coupled plasma mass spectrometry due to interferences. Methods Titanium was measured using inductively coupled plasma optical emission spectroscopy using the emission line at 336.1 nm and Y (internal standard) at 371.0 nm. Internal quality control materials were prepared for blood and serum and concentrations assigned using a sector field-inductively coupled plasma mass spectrometer. A candidate whole blood certified reference material was also evaluated. Results The method had detection and quantitation limits of 0.6 and 1.9 µg/L, respectively. The respective bias (%) and measurement uncertainty ( U) (k = 2) were 3.3% and 2.0 µg/L (serum) and - 1.0% and 1.4 µg/L (whole blood). The respective repeatability and intermediate precision (%) were 5.1% and 10.9% (serum) and 2.4% and 8.6% (whole blood). The concentration of titanium was determined in patients' samples, serum (median = 2.4 µg/L, n = 897) and whole blood (median = 2.4 µg/L, n = 189). Serum is recommended for monitoring titanium in patients, since the concentration is higher than in whole blood and the matrix less problematic. In hip fluid samples, the concentrations were much higher (mean 58.5 µg/L, median 5.1 µg/L, n = 83). Conclusions A method based on inductively coupled plasma optical emission spectroscopy was developed and validated for measuring titanium in clinical samples.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Espectrofotometría Atómica/normas , Titanio/sangre , Cromo/sangre , Cobalto/sangre , Femenino , Prótesis de Cadera , Humanos , Límite de Detección , Masculino , Control de Calidad , Estándares de Referencia
3.
Biochem J ; 442(3): 639-48, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22145777

RESUMEN

Selective small-molecule inhibitors represent powerful tools for the dissection of complex biological processes. ES(I) (eeyarestatin I) is a novel modulator of ER (endoplasmic reticulum) function. In the present study, we show that in addition to acutely inhibiting ERAD (ER-associated degradation), ES(I) causes production of mislocalized polypeptides that are ubiquitinated and degraded. Unexpectedly, our results suggest that these non-translocated polypeptides promote activation of the UPR (unfolded protein response), and indeed we can recapitulate UPR activation with an alternative and quite distinct inhibitor of ER translocation. These results suggest that the accumulation of non-translocated proteins in the cytosol may represent a novel mechanism that contributes to UPR activation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Respuesta de Proteína Desplegada/fisiología , Citosol/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Hidrazonas/metabolismo , Hidroxiurea/análogos & derivados , Hidroxiurea/metabolismo , Péptidos/química , Péptidos/metabolismo , Pliegue de Proteína , Transfección , Ubiquitina/metabolismo
4.
PLoS One ; 6(7): e22713, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799938

RESUMEN

BACKGROUND: The small molecule Eeyarestatin I (ESI) inhibits the endoplasmic reticulum (ER)-cytosol dislocation and subsequent degradation of ERAD (ER associated protein degradation) substrates. Toxins such as ricin and Shiga/Shiga-like toxins (SLTx) are endocytosed and trafficked to the ER. Their catalytic subunits are thought to utilise ERAD-like mechanisms to dislocate from the ER into the cytosol, where a proportion uncouples from the ERAD process, recovers a catalytic conformation and destroys their cellular targets. We therefore investigated ESI as a potential inhibitor of toxin dislocation. METHODOLOGY AND PRINCIPAL FINDINGS: Using cytotoxicity measurements, we found no role for ES(I) as an inhibitor of toxin dislocation from the ER, but instead found that for SLTx, ESI treatment of cells was protective by reducing the rate of toxin delivery to the ER. Microscopy of the trafficking of labelled SLTx and its B chain (lacking the toxic A chain) showed a delay in its accumulation at a peri-nuclear location, confirmed to be the Golgi by examination of SLTx B chain metabolically labelled in the trans-Golgi cisternae. The drug also reduced the rate of endosomal trafficking of diphtheria toxin, which enters the cytosol from acidified endosomes, and delayed the Golgi-specific glycan modifications and eventual plasma membrane appearance of tsO45 VSV-G protein, a classical marker for anterograde trafficking. CONCLUSIONS AND SIGNIFICANCE: ESI acts on one or more components that function during vesicular transport, whilst at least one retrograde trafficking pathway, that of ricin, remains unperturbed.


Asunto(s)
Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Transporte Biológico/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Toxina Diftérica/metabolismo , Toxina Diftérica/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Hidroxiurea/farmacología , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Ricina/metabolismo , Ricina/toxicidad , Toxina Shiga/metabolismo , Toxina Shiga/toxicidad , Factores de Tiempo , Proteínas del Envoltorio Viral/metabolismo
5.
J Cell Sci ; 122(Pt 23): 4393-400, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19903691

RESUMEN

Production and trafficking of proteins entering the secretory pathway of eukaryotic cells is coordinated at the endoplasmic reticulum (ER) in a process that begins with protein translocation via the membrane-embedded ER translocon. The same complex is also responsible for the co-translational integration of membrane proteins and orchestrates polypeptide modifications that are often essential for protein function. We now show that the previously identified inhibitor of ER-associated degradation (ERAD) eeyarestatin 1 (ES(I)) is a potent inhibitor of protein translocation. We have characterised this inhibition of ER translocation both in vivo and in vitro, and provide evidence that ES(I) targets a component of the Sec61 complex that forms the membrane pore of the ER translocon. Further analyses show that ES(I) acts by preventing the transfer of the nascent polypeptide from the co-translational targeting machinery to the Sec61 complex. These results identify a novel effect of ES(I), and suggest that the drug can modulate canonical protein transport from the cytosol into the mammalian ER both in vitro and in vivo.


Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/efectos de los fármacos , Línea Celular Tumoral , Humanos , Hidroxiurea/farmacología , Inmunoprecipitación , Canales de Translocación SEC
6.
Photochem Photobiol ; 85(2): 494-500, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19192206

RESUMEN

Opsin is the unstable apo-protein of the light-activated G protein-coupled receptor rhodopsin. We investigated the stability of bovine opsin, solubilized in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/detergent bicelles, against urea-induced unfolding. A single irreversible protein unfolding transition was observed from changes in intrinsic tryptophan fluorescence and far-UV circular dichroism. This unfolding transition correlated with loss of protein activity. Changes in tertiary structure, as indicated by fluorescence measurements, were concomitant with an approximate 50% reduction in alpha-helical content of opsin, indicating that global unfolding had been induced by urea. The urea concentration at the midpoint of unfolding was dependent on the lipid/detergent environment, occurring at approximately 1.2 m urea in DMPC/1,2-dihexanoyl-sn-glycero-3-phosphocholine bicelles, while being significantly stabilized to approximately 3.5 m urea in DMPC/3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate bicelles. These findings demonstrate that interactions with the surrounding lipids and detergent are highly influential in the unfolding of membrane protein structure. The urea/bicelle system offers the possibility for a more detailed understanding of the structural changes that take place upon irreversible unfolding of opsin.


Asunto(s)
Opsinas/química , Opsinas/metabolismo , Fosfolípidos/química , Pliegue de Proteína , Urea , Animales , Bovinos , Ácidos Cólicos , Dimiristoilfosfatidilcolina , Cinética , Éteres Fosfolípidos , Espectrofotometría , Triptófano
7.
J Mol Biol ; 374(5): 1309-18, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17988684

RESUMEN

The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110-Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185-Cys187 disulfide bond in the intradiscal domain. Here, by mutating Cys185 to alanine, we eliminate the possibility of forming this abnormal disulfide bond and investigate the effect of combining the C185A mutation with the retinitis pigmentosa mutation P23H. Both the P23H and P23H/C185A double mutant suffer from low expression and poor 11-cis retinal binding. Our data suggest that misfolding events occur that do not have an absolute requirement for abnormal Cys185-Cys187 disulfide bond formation. In the detergent-solubilised, purified state, the C185A mutation allows formation of rhodopsin at wild-type (WT) levels, but has interesting effects on protein stability. C185A rhodopsin is less thermally stable than WT, whereas C185A opsin shows the same ability to regenerate rhodopsin in detergent as WT. Purified C185A and WT opsins, however, have contrasting 11-cis retinal binding kinetics. A high proportion of C185A opsin binds 11-cis retinal with a slow rate that reflects a denatured state of opsin reverting to a fast-binding, open-pocket conformation. This slower rate is not observed in a stabilising lipid/detergent system, 1,2-dimyristoyl-sn-glycero-3-phosphocholine/Chaps, in which C185A exhibits WT (fast) retinal binding. We propose that the C185A mutation destabilises the open-pocket conformation of opsin in detergent resulting in an equilibrium between correctly folded and denatured states of the protein. This equilibrium can be driven towards the correctly folded rhodopsin state by the binding of 11-cis retinal.


Asunto(s)
Opsinas de Bastones/química , Animales , Células COS , Chlorocebus aethiops , Detergentes/farmacología , Mutagénesis , Pliegue de Proteína , Opsinas de Bastones/genética , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
8.
J Mol Biol ; 374(5): 1319-32, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17996895

RESUMEN

Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-alpha-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin. Opsin is particularly unstable in detergent solution but can be directly purified into DMPC/Chaps. We show that opsin can also be directly purified in DMPC/DHPC bicelles to give correctly folded functional opsin, as shown by the ability to regenerate rhodopsin to approximately 70% yield. These well-characterised DMPC/DHPC bicelles enable us to probe the influence of bicelle properties on opsin stability. These bicelles are thought to provide DMPC bilayer fragments with most DHPC capping the bilayer edge, giving a soluble bilayer disc. Opsin stability is shown to be modulated by the q value, the ratio of DMPC to DHPC, which reflects changes in the bicelle size and, thus, proportion of DMPC bilayer present. The observed changes in stability also correlate with loss of opsin secondary structure as determined by synchrotron far-UV circular dichroism spectroscopy; the most stable bicelle results in the least helix loss. The inclusion of Chaps rather than DHPC in the DMPC/Chaps bicelles, however, imparts the greatest stability. This suggests that it is not just the DMPC bilayer fragment in the bicelles that stabilises the protein, but that Chaps provides additional stability either through direct interaction with the protein or by altering the DMPC/Chaps bilayer properties within the bicelle. The significant stability enhancements and preservation of secondary structure reported here in bicelles are pertinent to other membrane proteins, notably G-protein-coupled receptors, which are unstable in detergent solution.


Asunto(s)
Fosfolípidos/química , Opsinas de Bastones/química , Dicroismo Circular , Membrana Dobles de Lípidos , Pliegue de Proteína , Estructura Secundaria de Proteína , Solubilidad , Espectrofotometría Ultravioleta
9.
FEBS Lett ; 540(1-3): 234-40, 2003 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-12681514

RESUMEN

Photo-excitation of membrane-bound Rhodobacter sphaeroides reaction centres containing the mutation Ala M260 to Trp (AM260W) resulted in the accumulation of a radical pair state involving the photo-oxidised primary electron donor (P). This state had a lifetime of hundreds of milliseconds and its formation was inhibited by stigmatellin. The absence of the Q(A) ubiquinone in the AM260W reaction centre suggests that this long-lived radical pair state is P(+)Q(B)(-), although the exact reduction/protonation state of the Q(B) quinone remains to be confirmed. The blockage of active branch (A-branch) electron transfer by the AM260W mutation implies that this P(+)Q(B)(-) state is formed by electron transfer along the so-called inactive branch (B-branch) of reaction centre cofactors. We discuss how further mutations may affect the yield of the P(+)Q(B)(-) state, including a double alanine mutation (EL212A/DL213A) that probably has a direct effect on the efficiency of the low yield electron transfer step from the anion of the B-branch bacteriopheophytin (H(B)(-)) to the Q(B) ubiquinone.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Ubiquinona/química , Radicales Libres , Fotoquímica , Potenciometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...