Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Fluids Barriers CNS ; 21(1): 40, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725029

RESUMEN

BACKGROUND: Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation of α-synuclein protofibrils. New diagnostic methods assess α-synuclein aggregation characteristics from cerebrospinal fluid (CSF) and recent pathophysiologic mechanisms suggest that CSF circulation disruptions may precipitate α-synuclein retention. Here, diffusion-weighted MRI with low-to-intermediate diffusion-weightings was applied to test the hypothesis that CSF motion is reduced in Parkinson's disease relative to healthy participants. METHODS: Multi-shell diffusion weighted MRI (spatial resolution = 1.8 × 1.8 × 4.0 mm) with low-to-intermediate diffusion weightings (b-values = 0, 50, 100, 200, 300, 700, and 1000 s/mm2) was applied over the approximate kinetic range of suprasellar cistern fluid motion at 3 Tesla in Parkinson's disease (n = 27; age = 66 ± 6.7 years) and non-Parkinson's control (n = 32; age = 68 ± 8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the noise floor-corrected decay rate of CSF signal as a function of b-value, which reflects increasing fluid motion, is reduced within the suprasellar cistern of persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted MRI (significance-criteria: p < 0.05). RESULTS: Consistent with the primary hypothesis, CSF decay rates were higher in healthy (D = 0.00673 ± 0.00213 mm2/s) relative to Parkinson's disease (D = 0.00517 ± 0.00110 mm2/s) participants. This finding was preserved after controlling for age and sex and was observed in the posterior region of the suprasellar cistern (p < 0.001). An inverse correlation between choroid plexus perfusion and decay rate in the voxels within the suprasellar cistern (Spearman's-r=-0.312; p = 0.019) was observed. CONCLUSIONS: Multi-shell diffusion MRI was applied to identify reduced CSF motion at the level of the suprasellar cistern in adults with versus without Parkinson's disease; the strengths and limitations of this methodology are discussed in the context of the growing literature on CSF flow.


Asunto(s)
Líquido Cefalorraquídeo , Imagen de Difusión por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Masculino , Femenino , Persona de Mediana Edad , Líquido Cefalorraquídeo/diagnóstico por imagen , Líquido Cefalorraquídeo/fisiología , Movimiento (Física)
2.
Fluids Barriers CNS ; 21(1): 15, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350930

RESUMEN

BACKGROUND: Peri-sinus structures such as arachnoid granulations (AG) and the parasagittal dural (PSD) space have gained much recent attention as sites of cerebral spinal fluid (CSF) egress and neuroimmune surveillance. Neurofluid circulation dysfunction may manifest as morphological changes in these structures, however, automated quantification of these structures is not possible and rather characterization often requires exogenous contrast agents and manual delineation. METHODS: We propose a deep learning architecture to automatically delineate the peri-sinus space (e.g., PSD and intravenous AG structures) using two cascaded 3D fully convolutional neural networks applied to submillimeter 3D T2-weighted non-contrasted MRI images, which can be routinely acquired on all major MRI scanner vendors. The method was evaluated through comparison with gold-standard manual tracing from a neuroradiologist (n = 80; age range = 11-83 years) and subsequently applied in healthy participants (n = 1,872; age range = 5-100 years), using data from the Human Connectome Project, to provide exemplar metrics across the lifespan. Dice-Sørensen and a generalized linear model was used to assess PSD and AG changes across the human lifespan using quadratic restricted splines, incorporating age and sex as covariates. RESULTS: Findings demonstrate that the PSD and AG volumes can be segmented using T2-weighted MRI with a Dice-Sørensen coefficient and accuracy of 80.7 and 74.6, respectively. Across the lifespan, we observed that total PSD volume increases with age with a linear interaction of gender and age equal to 0.9 cm3 per year (p < 0.001). Similar trends were observed in the frontal and parietal, but not occipital, PSD. An increase in AG volume was observed in the third to sixth decades of life, with a linear effect of age equal to 0.64 mm3 per year (p < 0.001) for total AG volume and 0.54 mm3 (p < 0.001) for maximum AG volume. CONCLUSIONS: A tool that can be applied to quantify PSD and AG volumes from commonly acquired T2-weighted MRI scans is reported and exemplar volumetric ranges of these structures are provided, which should provide an exemplar for studies of neurofluid circulation dysfunction. Software and training data are made freely available online ( https://github.com/hettk/spesis ).


Asunto(s)
Aprendizaje Profundo , Longevidad , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Preescolar , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Espectroscopía de Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos
3.
Fluids Barriers CNS ; 21(1): 21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424598

RESUMEN

BACKGROUND: The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circulation dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume are suboptimal and require technical improvements and validation. Here, we propose three deep learning models that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics and changes across the adult lifespan. METHODS: Fully convolutional neural networks were trained from 3D T1-weighted, 3D T2-weighted, and 2D T2-weighted FLAIR MRI using gold-standard manual segmentations in control and neurodegenerative participants across the lifespan (n = 50; age = 21-85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve (AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon tests (significance criteria: p < 0.05 after false discovery rate multiple comparisons correction). Metrics were regressed against lateral ventricular volume using generalized linear models to assess model performance for varying levels of atrophy. Finally, models were applied to an expanded cohort of adult controls (n = 98; age = 21-89 years) to provide an exemplar of choroid plexus volumetry values across the lifespan. RESULTS: Deep learning results yielded Dice coefficient = 0.72, Hausdorff distance = 1.97 mm, AUC = 0.87 for T1-weighted MRI, Dice coefficient = 0.72, Hausdorff distance = 2.22 mm, AUC = 0.87 for T2-weighted MRI, and Dice coefficient = 0.74, Hausdorff distance = 1.69 mm, AUC = 0.87 for T2-weighted FLAIR MRI; values did not differ significantly between MRI sequences and were statistically improved compared to current commercially-available algorithms (p < 0.001). The intraclass coefficients were 0.95, 0.95, and 0.96 between T1-weighted and T2-weighted FLAIR, T1-weighted and T2-weighted, and T2-weighted and T2-weighted FLAIR models, respectively. Mean lateral ventricle choroid plexus volume across all participants was 3.20 ± 1.4 cm3; a significant, positive relationship (R2 = 0.54-0.60) was observed between participant age and choroid plexus volume for all MRI sequences (p < 0.001). CONCLUSIONS: Findings support comparable performance in choroid plexus delineation between standard, clinically available, non-contrasted anatomical MRI sequences. The software embedding the evaluated models is freely available online and should provide a useful tool for the growing number of studies that desire to quantitatively evaluate choroid plexus structure and function ( https://github.com/hettk/chp_seg ).


Asunto(s)
Aprendizaje Profundo , Adulto , Humanos , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Procesamiento de Imagen Asistido por Computador/métodos , Longevidad , Plexo Coroideo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
4.
J Neuroimaging ; 34(1): 152-162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37885135

RESUMEN

BACKGROUND AND PURPOSE: Choroid plexus (ChP) hyperemia has been observed in patients with intracranial vasculopathy and to reduce following successful surgical revascularization. This observation may be attributable to impaired vascular reserve of the ChP or other factors, such as the ChP responding to circulating markers of stress. We extend this work to test the hypothesis that vascular reserve of the ChP is unrelated to intracranial vasculopathy. METHODS: We performed hypercapnic reactivity (blood oxygenation level-dependent; echo time = 35 ms; spatial resolution = 3.5 × 3.5 × 3.5 mm, repetition time = 2000 ms) and catheter angiography assessments of ChP reserve capacity and vascular patency in moyamoya patients (n = 53) with and without prior surgical revascularization. Time regression analyses quantified maximum cerebrovascular reactivity and reactivity delay time in ChP and cortical flow territories of major intracranial vessels with steno-occlusion graded as <70%, 70%-99%, and occlusion using Warfarin-Aspirin-Symptomatic-Intracranial-Disease stenosis grading criteria. Analysis of variance (significance: two-sided Bonferroni-corrected p < .05) was applied to evaluate cortical and ChP reactivity, after accounting for end-tidal carbon dioxide change, for differing vasculopathy categories. RESULTS: In patients without prior revascularization, arterial vasculopathy was associated with reduced cortical reactivity and lengthened reactivity delay (p ≤ .01), as expected. Regardless of surgical history, the ChP reactivity metrics were not significantly related to the degree of proximal stenosis, consistent with ChP reactivity being largely preserved in this population. CONCLUSIONS: Findings are consistent with ChP reactivity in moyamoya not being dependent on observed vasculopathy. Future work may investigate the extent to which ChP hyperemia in chronic ischemia reflects circulating markers of glial or ischemic stress.


Asunto(s)
Trastornos Cerebrovasculares , Hiperemia , Enfermedad de Moyamoya , Humanos , Plexo Coroideo/diagnóstico por imagen , Constricción Patológica , Enfermedad de Moyamoya/diagnóstico por imagen , Isquemia
5.
J Neuroimaging ; 34(1): 86-94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38018353

RESUMEN

BACKGROUND AND PURPOSE: Paramagnetic rims and the central vein sign (CVS) are proposed imaging markers of multiple sclerosis (MS) lesions. Using 7 tesla magnetic resonance imaging, we aimed to: (1) characterize the appearance of paramagnetic rim lesions (PRLs); (2) assess whether PRLs and the CVS are associated with higher levels of MS pathology; and (3) compare the characteristics between subjects with and without PRLs in early MS. METHODS: Prospective study of 32 treatment-naïve subjects around the time of diagnosis who were assessed for the presence of PRLs and the CVS. Comparisons of lesion volume and macromolecular pool size ratio (PSR) index, a proxy of myelin integrity, between PRLs and non-PRLs, and CVS-positive and CVS-negative lesions were carried out. Differences in clinical/demographic characteristics between patients with PRLs and those without were tested. RESULTS: Fifteen subjects had ≥1 PRL for a total of 36 PRLs, of which two-thirds had a full rim. PRLs predicted a larger lesion size and decreased PSR signal. Lesion volume and presence of cervical spine lesions were significantly different between subjects with PRLs and those without, although neither remained significant after adjusting for multiple comparisons. One hundred and eighty-one lesions with CVS were identified with no differences between CVS-positive and CVS-negative lesions in volume (p = .27) and PSR values (p = .62). CONCLUSIONS: PRLs, but not CVS-positive lesions, are larger and have lower myelin integrity. Our findings indicate that PRLs are associated with higher levels of lesion-specific pathology prior to the start of disease-modifying therapy.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Encéfalo/patología , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Venas/patología
6.
Mult Scler J Exp Transl Clin ; 9(4): 20552173231211396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021451

RESUMEN

Background: Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective: We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods: MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results: Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion: Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.

7.
Neuroimage ; 284: 120460, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979894

RESUMEN

BACKGROUND: Susceptibility-weighted imaging (SWI) has been extensively studied in the brain and in diseases of the central nervous system such as multiple sclerosis (MS) providing unique opportunities to visualize cerebral vasculature and disease-related pathology, including the central vein sign (CVS) and paramagnetic rim lesions (PRLs). However, similar studies evaluating SWI in the spinal cord of patients with MS remain severely limited. PURPOSE: Based on our previous findings of enlarged spinal vessels in MS compared to healthy controls (HCs), we developed high-field SWI acquisition and processing methods for the cervical spinal cord with application in people with MS (pwMS) and HCs. Here, we demonstrate the vascular variability between the two cohorts and unique MS lesion features in the cervical cord. METHODS: In this retrospective, exploratory pilot study conducted between March 2021 and March 2022, we scanned 12 HCs and 9 pwMS using an optimized non-contrast 2D T2*-weighted gradient echo sequence at 7 tesla. The overall appearance of the white and gray matter as well as tissue vasculature were compared between the two cohorts and areas of MS pathology in the patient group were assessed using both the magnitude and processed SWI images. RESULTS: We show improved visibility of vessels and more pronounced gray and white matter contrast in the MS group compared to HCs, hypointensities surrounding the cord in the MS cohort, and identify signal changes indicative of the CVS and paramagnetic rims in 66 % of pwMS with cervical spinal lesions. CONCLUSION: In this first study of SWI at 7T in the human spinal cord, SWI holds promise in advancing our understanding of disease processes in the cervical cord in MS.


Asunto(s)
Médula Cervical , Esclerosis Múltiple , Humanos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Retrospectivos , Proyectos Piloto , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos
8.
Res Sq ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790534

RESUMEN

Background: The choroid plexus functions as the blood-cerebrospinal fluid barrier, plays an important role in neurofluid production and circulation, and has gained increased attention in light of the recent elucidation of neurofluid circulation dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume are suboptimal and require technical improvements and validation. Here, we propose three deep learning models that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics and changes across the adult lifespan. Methods: Fully convolutional neural networks were trained from 3-D T1-weighted, 3-D T2-weighted, and 2-D T2-weighted FLAIR MRI and gold-standard manual segmentations in healthy and neurodegenerative participants across the lifespan (n=50; age=21-85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve (AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon tests (significance criteria: p<0.05 after false discovery rate multiple comparisons correction). Metrics were regressed against lateral ventricular volume using generalized linear models to assess model performance for varying levels of atrophy. Finally, models were applied to an expanded cohort of healthy adults (n=98; age=21-89 years) to provide an exemplar of choroid plexus volumetry values across the lifespan. Results: Deep learning results yielded Dice coefficient=0.72, Hausdorff distance=1.97 mm, AUC=0.87 for T1-weighted MRI, Dice coefficient=0.72, Hausdorff distance=2.22 mm, AUC=0.87 for T2-weighted MRI, and Dice coefficient=0.74, Hausdorff distance=1.69 mm, AUC=0.87 for T2-weighted FLAIR MRI; values did not differ significantly between2 MRI sequences and were statistically improved compared to current commercially-available algorithms (p<0.001). The intraclass coefficients were 0.95, 0.95, and 0.96 between T1-weighted and T2-FLAIR, T1-weighted and T2-weighted, and T2-weighted and T2-FLAIR models, respectively. Mean lateral ventricle choroid plexus volume across all participants was 3.20±1.4 cm3; a significant, positive relationship (R2=0.54; slope=0.047) was observed between participant age and choroid plexus volume for all MRI sequences (p<0.001). Conclusions: Findings support comparable performance in choroid plexus delineation between standard, clinically available, non-contrasted anatomical MRI sequences. The software embedding the evaluated models is freely available online and should provide a useful tool for the growing number of studies that desire to quantitatively evaluate choroid plexus structure and function (https://github.com/hettk/chp_seg).

9.
Sci Rep ; 13(1): 18189, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875563

RESUMEN

Functional MRI (fMRI) of the spinal cord is an expanding area of research with potential to investigate neuronal activity in the central nervous system. We aimed to characterize the functional connectivity features of the human lumbar spinal cord using resting-state fMRI (rs-fMRI) at 3T, using region-based and data-driven analysis approaches. A 3D multi-shot gradient echo resting-state blood oxygenation level dependent-sensitive rs-fMRI protocol was implemented in 26 healthy participants. Average temporal signal-to-noise ratio in the gray matter was 16.35 ± 4.79 after denoising. Evidence of synchronous signal fluctuations in the ventral and dorsal horns with their contralateral counterparts was observed in representative participants using interactive, exploratory seed-based correlations. Group-wise average in-slice Pearson's correlations were 0.43 ± 0.17 between ventral horns, and 0.48 ± 0.16 between dorsal horns. Group spatial independent component analysis (ICA) was used to identify areas of coherent activity¸ and revealed components within the gray matter corresponding to anatomical regions. Lower-dimensionality ICA revealed bilateral components corresponding to ventral and dorsal networks. Additional separate ICAs were run on two subsets of the participant group, yielding two sets of components that showed visual consistency and moderate spatial overlap. This work shows feasibility of rs-fMRI to probe the functional features and organization of the lumbar spinal cord.


Asunto(s)
Sustancia Gris , Médula Espinal , Animales , Humanos , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología , Sustancia Gris/diagnóstico por imagen , Asta Dorsal de la Médula Espinal , Corteza Cerebral , Imagen por Resonancia Magnética/métodos , Voluntarios Sanos , Encéfalo , Mapeo Encefálico/métodos
10.
Res Sq ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37720044

RESUMEN

BACKGROUND: Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation and accumulation of a-synuclein protofibrils. New diagnostic methods assess a-synuclein aggregation characteristics from cerebrospinal fluid and recent pathophysiologic mechanisms suggest that cerebrospinal fluid circulation disruptions may precipitate a-synuclein retention. Here, we test the hypothesis that cerebrospinal fluid motion at the level of the suprasellar cistern is reduced in Parkinson's disease relative to healthy participants and this reduction relates to choroid plexus perfusion. METHODS: Diffusion weighted imaging (spatial resolution=1.8×1.8×4 mm) magnetic resonance imaging with cycling of diffusion weightings (b-values=0, 50, 100, 200, 300, 700, and 1000 s/mm2) over the approximate kinetic range of suprasellar cistern neurofluid motion was applied at 3-Tesla in Parkinson's disease (n=27; age=66±6.7 years) and healthy (n=32; age=68±8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the decay rate of cerebrospinal fluid signal as a function of b-value, which reflects increasing fluid motion, is reduced in persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted magnetic resonance imaging (Spearman rank-order correlation; significance-criteria: p<0.05). RESULTS: Consistent with the primary hypothesis, decay rates were higher in healthy (D=0.00328±0.00123mm2/s) relative to Parkinson's disease (D=0.00256±0.0094mm2/s) participants (p=0.016). This finding was preserved after controlling for age and sex. An inverse correlation between choroid plexus perfusion and decay rate (p=0.011) was observed in Parkinson's disease participants. CONCLUSIONS: Cerebrospinal fluid motion at the level of the suprasellar cistern is often reduced in adults with versus without Parkinson's disease and this reduction correlates on average with choroid plexus perfusion.

11.
Ann Neurol ; 94(5): 885-894, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37493342

RESUMEN

OBJECTIVE: Investigations of cerebrospinal fluid (CSF) flow aberrations in Huntington's disease (HD) are of growing interest, as impaired CSF flow may contribute to mutant Huntington retention and observed heterogeneous responsiveness to intrathecally administered therapies. METHOD: We assessed net cerebral aqueduct CSF flow and velocity in 29 HD participants (17 premanifest and 12 manifest) and 51 age- and sex matched non-HD control participants using 3-Tesla magnetic resonance imaging methods. Regression models were applied to test hypotheses regarding: (i) net CSF flow and cohort, (ii) net CSF flow and disease severity (CAP-score), and (iii) CSF volume after correcting for age and sex. RESULTS: Group-wise analyses support a decrease in net CSF flow in HD (mean 0.14 ± 0.27 mL/min) relative to control (mean 0.32 ± 0.20 mL/min) participants (p = 0.02), with lowest flow in the manifest HD cohort (mean 0.04 ± 0.25 mL/min). This finding was explained by hyperdynamic CSF movement, manifesting as higher caudal systolic CSF flow velocity and higher diastolic cranial CSF flow velocity across the cardiac cycle, in HD (caudal flow: 0.17 ± 0.07 mL/s, cranial flow: 0.14 ± 0.08 mL/s) compared to control (caudal flow: 0.13 ± 0.06 mL/s, cranial flow: 0.11 ± 0.04 mL/s) participants. A positive correlation between cranial diastolic flow and disease severity was observed (p = 0.02). INTERPRETATIONS: Findings support aqueductal CSF flow dynamics changing with disease severity in HD. These accelerated changes are consistent with changes observed over the typical adult lifespan, and may have relevance to mutant Huntington retention and intrathecally administered therapeutics responsiveness. ANN NEUROL 2023;94:885-894.


Asunto(s)
Enfermedad de Huntington , Adulto , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/líquido cefalorraquídeo , Ventrículos Cerebrales , Acueducto del Mesencéfalo , Imagen por Resonancia Magnética/métodos , Cráneo , Líquido Cefalorraquídeo
12.
Brain Commun ; 5(3): fcad128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143860

RESUMEN

One of the pathological hallmarks of Alzheimer's and related diseases is the increased accumulation of protein amyloid-ß in the brain parenchyma. As such, recent studies have focused on characterizing protein and related clearance pathways involving perivascular flow of neurofluids, but human studies of these pathways are limited owing to limited methods for evaluating neurofluid circulation non-invasively in vivo. Here, we utilize non-invasive MRI methods to explore surrogate measures of CSF production, bulk flow and egress in the context of independent PET measures of amyloid-ß accumulation in older adults. Participants (N = 23) were scanned at 3.0 T with 3D T2-weighted turbo spin echo, 2D perfusion-weighted pseudo-continuous arterial spin labelling and phase-contrast angiography to quantify parasagittal dural space volume, choroid plexus perfusion and net CSF flow through the aqueduct of Sylvius, respectively. All participants also underwent dynamic PET imaging with amyloid-ß tracer 11C-Pittsburgh Compound B to quantify global cerebral amyloid-ß accumulation. Spearman's correlation analyses revealed a significant relationship between global amyloid-ß accumulation and parasagittal dural space volume (rho = 0.529, P = 0.010), specifically in the frontal (rho = 0.527, P = 0.010) and parietal (rho = 0.616, P = 0.002) subsegments. No relationships were observed between amyloid-ß and choroid plexus perfusion nor net CSF flow. Findings suggest that parasagittal dural space hypertrophy, and its possible role in CSF-mediated clearance, may be closely related to global amyloid-ß accumulation. These findings are discussed in the context of our growing understanding of the physiological mechanisms of amyloid-ß aggregation and clearance via neurofluids.

13.
Neuroimage ; 266: 119826, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36543265

RESUMEN

Quantitative diffusion MRI (dMRI) is a promising technique for evaluating the spinal cord in health and disease. However, low signal-to-noise ratio (SNR) can impede interpretation and quantification of these images. The purpose of this study is to evaluate several dMRI denoising approaches on their ability to improve the quality, reliability, and accuracy of quantitative diffusion MRI of the spinal cord. We evaluate three denoising approaches (Non-Local Means, Marchenko-Pastur PCA, and a newly proposed Patch2Self algorithm) and conduct five experiments to validate the denoising performance on clinical-quality and commonly-acquired dMRI acquisitions: 1) a phantom experiment to assess denoising error and bias; 2) a multi-vendor, multi-acquisition open experiment for both qualitative and quantitative evaluation of noise residuals; 3) a bootstrapping experiment to estimate uncertainty of parametric maps; 4) an assessment of spinal cord lesion conspicuity in a multiple sclerosis group; and 5) an evaluation of denoising for advanced parametric multi-compartment modeling. We find that all methods improve signal-to-noise ratio and conspicuity of MS lesions in individual diffusion weighted images (DWIs), but MPPCA and Patch2Self excel at improving the quality and intra-cord contrast of diffusion weighted images - removing signal fluctuations due to thermal noise while improving precision of estimation of diffusion parameters even with very few DWIs (i.e., 16-32) typical of clinical acquisitions. These denoising approaches hold promise for facilitating reliable diffusion observations and measurements in the spinal cord to investigate biological and pathological processes.


Asunto(s)
Médula Cervical , Humanos , Médula Cervical/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Relación Señal-Ruido , Algoritmos
14.
J Cereb Blood Flow Metab ; 43(2): 269-280, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200473

RESUMEN

The choroid plexus (ChP) comprises a collection of modified ependymal cells that play an important role in the production of brain cerebrospinal fluid (CSF), and ChP perfusion aberrations have been implicated in a range of cerebrovascular and neurodegenerative disorders. To provide an exemplar for the growing interest in ChP activity, we evaluated ChP perfusion and bulk CSF flow cross-sectionally across the healthy adult lifespan. Participants (n = 77; age range = 21-86 years) were scanned at 3T using T1-weighted, T2-weighted-FLAIR, perfusion-weighted pCASL, and phase contrast MRI to calculate ChP anatomy, perfusion, and aqueductal CSF flow, respectively. Regression models were applied to evaluate aging effects on ChP volume and ChP perfusion in the lateral ventricles, as well as CSF flow. ChP volume (mean ± std = 2.81 ± 1.1 cm3) increased (p < 0.001), ChP perfusion (36.3 ± 8.6 mL/100 g/min) decreased (p = 0.0078), and ChP total blood flow (1.13 ± 0.34 mL/min) increased (p < 0.001) with age. Cranial-to-caudal net CSF flow (0.245 ± 0.20 mL/min) decreased, absolute CSF flow (4.86 ± 2.96 mL/min) increased, and CSF regurgitant fraction (0.87 ± 0.126) increased with age (all: p < 0.001). ChP perfusion was directly related to net cranial-to-caudal CSF flow through the aqueduct (p = 0.033). The implications of these findings are discussed in the context of the growing literature on CSF circulatory dysfunction in neurodegeneration and cerebrovascular disease.


Asunto(s)
Plexo Coroideo , Longevidad , Adulto , Humanos , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/metabolismo , Ventrículos Cerebrales , Encéfalo , Perfusión , Líquido Cefalorraquídeo/fisiología
15.
Magn Reson Imaging ; 94: 144-150, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209946

RESUMEN

BACKGROUND: It remains a clinical challenge to differentiate brain tumors from radiation-induced necrosis in the brain. Despite significant improvements, no single MRI method has been validated adequately in the clinical setting. METHODS: Multi-parametric MRI (mpMRI) was performed to differentiate 9L gliosarcoma from radiation necrosis in animal models. Five types of MRI methods probed complementary information on different scales i.e., T2 (relaxation), CEST based APT (probing mobile proteins/peptides) and rNOE (mobile macromolecules), qMT (macromolecules), diffusion based ADC (cell density) and SSIFT iAUC (cell size), and perfusion based DSC (blood volume and flow). RESULTS: For single MRI parameters, iAUC and ADC provide the best discrimination of radiation necrosis and brain tumor. For mpMRI, a combination of iAUC, ADC, and APT shows the best classification performance based on a two-step analysis with the Lasso and Ridge regressions. CONCLUSION: A general mpMRI approach is introduced to choosing candidate multiple MRI methods, identifying the most effective parameters from all the mpMRI parameters, and finding the appropriate combination of chosen parameters to maximize the classification performance to differentiate tumors from radiation necrosis.


Asunto(s)
Neoplasias Encefálicas , Imágenes de Resonancia Magnética Multiparamétrica , Traumatismos por Radiación , Animales , Medios de Contraste , Roedores , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Imagen por Resonancia Magnética/métodos , Necrosis/diagnóstico por imagen
16.
Neuroimage Clin ; 35: 103127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35917721

RESUMEN

Focal lesions may affect functional connectivity (FC) of the ventral and dorsal networks in the cervical spinal cord of people with relapsing-remitting multiple sclerosis (RRMS). Resting-state FC can be measured using functional MRI (fMRI) at 3T. This study sought to determine whether alterations in FC may be related to the degree of damage in the normal-appearing tissue. Tissue integrity and FC in the cervical spinal cord were assessed with diffusion tensor imaging (DTI) and resting-state fMRI, respectively, in a group of 26 RRMS participants with high cervical lesion load, low disability, and minimally impaired sensorimotor function, and healthy controls. Lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in the normal-appearing white matter in the RRMS group relative to controls. Average FC in ventral and dorsal networks was similar between groups. Significant associations were found between higher FC in the dorsal sensory network and several DTI markers of pathology in the normal-appearing tissue. In the normal-appearing grey matter, dorsal FC was positively correlated with axial diffusivity (AD) (r = 0.46, p = 0.020) and mean diffusivity (MD) (r = 0.43, p = 0.032). In the normal-appearing white matter, dorsal FC was negatively correlated with FA (r = -0.43, p = 0.028) and positively correlated with RD (r = 0.49, p = 0.012), AD (r = 0.42, p = 0.037) and MD (r = 0.53, p = 0.006). These results suggest that increased connectivity, while remaining within the normal range, may represent a compensatory mechanism in response to structural damage in support of preserved sensory function in RRMS.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Encéfalo , Médula Cervical/patología , Imagen de Difusión Tensora/métodos , Humanos , Esclerosis Múltiple/patología , Esclerosis Múltiple Recurrente-Remitente/patología , Médula Espinal/patología
17.
Cancer Res ; 82(19): 3603-3613, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35877201

RESUMEN

Brain metastasis is a common characteristic of late-stage lung cancers. High doses of targeted radiotherapy can control tumor growth in the brain but can also result in radiotherapy-induced necrosis. Current methods are limited for distinguishing whether new parenchymal lesions following radiotherapy are recurrent tumors or radiotherapy-induced necrosis, but the clinical management of these two classes of lesions differs significantly. Here, we developed, validated, and evaluated a new MRI technique termed selective size imaging using filters via diffusion times (SSIFT) to differentiate brain tumors from radiotherapy necrosis in the brain. This approach generates a signal filter that leverages diffusion time dependence to establish a cell size-weighted map. Computer simulations in silico, cultured cancer cells in vitro, and animals with brain tumors in vivo were used to comprehensively validate the specificity of SSIFT for detecting typical large cancer cells and the ability to differentiate brain tumors from radiotherapy necrosis. SSIFT was also implemented in patients with metastatic brain cancer and radiotherapy necrosis. SSIFT showed high correlation with mean cell sizes in the relevant range of less than 20 µm. The specificity of SSIFT for brain tumors and reduced contrast in other brain etiologies allowed SSIFT to differentiate brain tumors from peritumoral edema and radiotherapy necrosis. In conclusion, this new, cell size-based MRI method provides a unique contrast to differentiate brain tumors from other pathologies in the brain. SIGNIFICANCE: This work introduces and provides preclinical validation of a new diffusion MRI method that exploits intrinsic differences in cell sizes to distinguish brain tumors and radiotherapy necrosis.


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Tamaño de la Célula , Diagnóstico Diferencial , Humanos , Imagen por Resonancia Magnética/métodos , Necrosis/diagnóstico por imagen , Recurrencia Local de Neoplasia/diagnóstico , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología
18.
Fluids Barriers CNS ; 19(1): 24, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313906

RESUMEN

BACKGROUND: Recent studies have suggested alternative cerebrospinal fluid (CSF) clearance pathways for brain parenchymal metabolic waste products. One fundamental but relatively under-explored component of these pathways is the anatomic region surrounding the superior sagittal sinus, which has been shown to have relevance to trans-arachnoid molecular passage. This so-called parasagittal dural (PSD) space may play a physiologically significant role as a distal intracranial component of the human glymphatic circuit, yet fundamental gaps persist in our knowledge of how this space changes with normal aging and intracranial bulk fluid transport. METHODS: We re-parameterized MRI methods to assess CSF circulation in humans using high resolution imaging of the PSD space and phase contrast measures of flow through the cerebral aqueduct to test the hypotheses that volumetric measures of PSD space (1) are directly related to CSF flow (mL/s) through the cerebral aqueduct, and (2) increase with age. Multi-modal 3-Tesla MRI was applied in healthy participants (n = 62; age range = 20-83 years) across the adult lifespan whereby phase contrast assessments of CSF flow through the aqueduct were paired with non-contrasted T1-weighted and T2-weighted MRI for PSD volumetry. PSD volume was extracted using a recently validated neural networks algorithm. Non-parametric regression models were applied to evaluate how PSD volume related to tissue volume and age cross-sectionally, and separately how PSD volume related to CSF flow (significance criteria: two-sided p < 0.05). RESULTS: A significant PSD volume enlargement in relation to normal aging (p < 0.001, Spearman's-[Formula: see text] = 0.6), CSF volume (p < 0.001, Spearman's-[Formula: see text] = 0.6) and maximum CSF flow through the aqueduct of Sylvius (anterograde and retrograde, p < 0.001) were observed. The elevation in PSD volume was not significantly related to gray or white matter tissue volumes. Findings are consistent with PSD volume increasing with age and bulk CSF flow. CONCLUSIONS: Findings highlight the feasibility of quantifying PSD volume non-invasively in vivo in humans using machine learning and non-contrast MRI. Additionally, findings demonstrate that PSD volume increases with age and relates to CSF volume and bi-directional flow. Values reported should provide useful normative ranges for how PSD volume adjusts with age, which will serve as a necessary pre-requisite for comparisons to persons with neurodegenerative disorders.


Asunto(s)
Longevidad , Imagen por Resonancia Magnética , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Acueducto del Mesencéfalo/fisiología , Ventrículos Cerebrales , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven
19.
Acad Radiol ; 29(1): 119-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561163

RESUMEN

The Radiology Research Alliance (RRA) of the Association of University Radiologists (AUR) convenes Task Forces to address current topics in radiology. In this article, the AUR-RRA Task Force on Academic-Industry Partnerships for Artificial Intelligence, considered issues of importance to academic radiology departments contemplating industry partnerships in artificial intelligence (AI) development, testing and evaluation. Our goal was to create a framework encompassing the domains of clinical, technical, regulatory, legal and financial considerations that impact the arrangement and success of such partnerships.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Radiografía , Radiólogos , Universidades
20.
Parkinsonism Relat Disord ; 89: 98-104, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34271425

RESUMEN

BACKGROUND: Reduced diffusion along perivascular spaces in adults with Alzheimer's-disease-related-dementias has been reported and attributed to reduced glymphatic function. OBJECTIVES: To apply quantitative measures of diffusion along, and orthogonal to, perivascular spaces in a cohort of older adults with and without clinical symptoms of alpha-synuclein related neurodegeneration. METHODS: 181 adults with Parkinson disease (PD) or essential tremor (ET) additionally sub-classified by the presence of cognitive impairment underwent 3 T MRI. Diffusion-tensor-imaging (spatial resolution = 2x2x2 mm; b-value = 1000 s/mm2; directions = 33) measures of diffusion (mm2/s) parallel and orthogonal to perivascular spaces at the level of the medullary veins, and the ratio of these measures (ALPS-index), were calculated. Regions were identified by a board-certified neuroradiologist from T1-weighted and T2-weighted MRI. Evaluations of motor impairment and mild cognitive impairment (MCI) were interpreted by a board-certified neurologist and neuropsychologist, respectively. Multiple regression with false discovery rate correction was applied to understand how diffusion metrics related to (i) disease category (PD vs. ET), (ii) cognition (MCI status), and (iii) white matter disease severity from the Fazekas score. RESULTS: The ALPS-index was reduced in PD compared to ET participants (p = 0.037). No association between the ALPS-index and MCI status, but an inverse association between the ALPS-index and Fazekas score (p = 0.002), was observed. The ALPS-index was inversely associated with age (p = 0.007). CONCLUSION: Diffusion aberrations near perivascular spaces are evident in patients with alpha-synuclein related neurodegenerative disorders, and are related to age and white matter disease severity.


Asunto(s)
Temblor Esencial , Sistema Glinfático , Enfermedad de Parkinson , Anciano , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Imagen de Difusión Tensora , Temblor Esencial/complicaciones , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/fisiopatología , Femenino , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Índice de Severidad de la Enfermedad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...