Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evolution ; 78(4): 624-634, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38241518

RESUMEN

Much of evolutionary theory is predicated on assumptions about the relative importance of simple additive versus complex epistatic genetic architectures. Previous work suggests traits strongly associated with fitness will lack additive genetic variation, whereas traits less strongly associated with fitness are expected to exhibit more additive genetic variation. We use a quantitative genetics method, line cross analysis, to infer genetic architectures that contribute to trait divergence. By parsing over 1,600 datasets by trait type, clade, and cross divergence, we estimated the relative importance of epistasis across the tree of life. In our comparison between life-history traits and morphological traits, we found greater epistatic contributions to life-history traits. Our comparison between plants and animals showed that animals have more epistatic contribution to trait divergence than plants. In our comparison of within-species versus between-species crosses, we found that only animals exhibit a greater epistatic contribution to trait divergence as divergence increases. While many scientists have argued that epistasis is ultimately of little importance, our results show that epistasis underlies much of trait divergence and must be accounted for in theory and practical applications like domestication, conservation breeding design, and understanding complex diseases.


Asunto(s)
Epistasis Genética , Rasgos de la Historia de Vida , Animales , Fitomejoramiento , Fenotipo , Plantas , Modelos Genéticos
2.
Plant Physiol ; 191(2): 1199-1213, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36264116

RESUMEN

Acylsugars, specialized metabolites with defense activities, are secreted by trichomes of many solanaceous plants. Several acylsugar metabolic genes (AMGs) remain unknown. We previously reported multiple candidate AMGs. Here, using multiple approaches, we characterized additional AMGs. First, we identified differentially expressed genes between high- and low-acylsugar-producing F2 plants derived from a cross between cultivated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii), which produce acylsugars that are ∼1% and ∼20% of leaf dry weight, respectively. Expression levels of many known and candidate AMGs positively correlated with acylsugar amounts in F2 individuals. Next, we identified lycopersicum-pennellii putative orthologs with higher nonsynonymous to synonymous substitutions. These analyses identified four candidate genes, three of which showed enriched expression in stem trichomes compared to underlying tissues (shaved stems). Virus-induced gene silencing confirmed two candidates, Sopen05g009610 [beta-ketoacyl-(acyl-carrier-protein) reductase; fatty acid synthase component] and Sopen07g006810 (Rubisco small subunit), as AMGs. Phylogenetic analysis indicated that Sopen05g009610 is distinct from specialized metabolic cytosolic reductases but closely related to two capsaicinoid biosynthetic reductases, suggesting evolutionary relationship between acylsugar and capsaicinoid biosynthesis. Analysis of publicly available datasets revealed enriched expression of Sopen05g009610 orthologs in trichomes of several acylsugar-producing species. Similarly, orthologs of Sopen07g006810 were identified as solanaceous trichome-enriched members, which form a phylogenetic clade distinct from those of mesophyll-expressed "regular" Rubisco small subunits. Furthermore, δ13C analyses indicated recycling of metabolic CO2 into acylsugars by Sopen07g006810 and showed how trichomes support high levels of specialized metabolite production. These findings have implications for genetic manipulation of trichome-specialized metabolism in solanaceous crops.


Asunto(s)
Solanum lycopersicum , Solanum , Humanos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Tricomas/genética , Tricomas/metabolismo , Filogenia , Solanum/genética , Solanum lycopersicum/genética , Ácido Graso Sintasas/metabolismo
3.
Plant Physiol ; 188(1): 397-410, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34597402

RESUMEN

The Arabidopsis (Arabidopsis thaliana) BTB-TAZ DOMAIN PROTEIN 2 (BT2) contains an N-terminal BTB domain, a central TAZ zinc-finger protein-protein interaction domain, and a C-terminal calmodulin-binding domain. We previously demonstrated that BT2 regulates telomerase activity and mediates multiple responses to nutrients, hormones, and abiotic stresses in Arabidopsis. Here, we describe the essential role of BT2 in activation of genes by multimerized Cauliflower mosaic virus 35S (35S) enhancers. Loss of BT2 function in several well-characterized 35S enhancer activation-tagged lines resulted in suppression of the activation phenotypes. Suppression of the phenotypes was associated with decreased transcript abundance of the tagged genes. Nuclear run-on assays, mRNA decay studies, and bisulfite sequencing revealed that BT2 is required to maintain the transcriptionally active state of the multimerized 35S enhancers, and lack of BT2 leads to hypermethylation of the 35S enhancers. The TAZ domain and the Ca++/calmodulin-binding domain of BT2 are critical for its function and 35S enhancer activity. We further demonstrate that BT2 requires CULLIN3 and two bromodomain-containing Global Transcription factor group E proteins (GTE9 and GTE11), to regulate 35S enhancer activity. We propose that the BT2-CULLIN3 ubiquitin ligase, through interactions with GTE9 and GTE11, regulates 35S enhancer activity in Arabidopsis.


Asunto(s)
Arabidopsis/genética , Caulimovirus/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Activación Transcripcional/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Plantas Modificadas Genéticamente
4.
Plant Cell ; 32(1): 81-99, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628166

RESUMEN

Many solanaceous plants secrete acylsugars, which are branched-chain and straight-chain fatty acids esterified to Glu or Suc. These compounds have important roles in plant defense and potential commercial applications. However, several acylsugar metabolic genes remain unidentified, and little is known about regulation of this pathway. Comparative transcriptomics between low- and high-acylsugar-producing accessions of Solanum pennellii revealed that expression levels of known and novel candidate genes (putatively encoding beta-ketoacyl-(acyl-carrier-protein) synthases, peroxisomal acyl-activating enzymes, ATP binding cassette (ABC) transporters, and central carbon metabolic proteins) were positively correlated with acylsugar accumulation, except two genes previously reported to be involved in acylglucose biosynthesis. Genes putatively encoding oxylipin metabolic proteins, subtilisin-like proteases, and other antimicrobial defense proteins were upregulated in low-acylsugar-producing accessions. Transcriptome analysis after biochemical inhibition of biosynthesis of branched-chain amino acids (precursors to branched-chain fatty acids) by imazapyr showed concentration-dependent downregulation of known and most acylsugar candidate genes, but not defense genes. Weighted gene correlation network analysis identified separate coexpressed gene networks for acylsugar metabolism (including six transcription factor genes and flavonoid metabolic genes) and plant defense (including genes putatively encoding NB-ARC and leucine-rich repeat sequences, protein kinases and defense signaling proteins, and previously mentioned defense proteins). Additionally, virus-induced gene silencing of two trichomes preferentially expressed candidate genes for straight-chain fatty acid biosynthesis confirmed their role in acylsugar metabolism.


Asunto(s)
Ácidos Grasos/metabolismo , Redes Reguladoras de Genes , Solanum/genética , Transportadoras de Casetes de Unión a ATP , Aciltransferasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Sacarosa , Transcriptoma , Tricomas/metabolismo
5.
Plant Mol Biol ; 96(4-5): 393-402, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29363002

RESUMEN

KEY MESSAGE: Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Azúcares/farmacología , Factores de Transcripción/metabolismo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Glucosa/farmacología , Cinética , Filogenia , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
J Exp Bot ; 63(18): 6531-42, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23125358

RESUMEN

Orthophosphate (P(i)) is an essential but limiting macronutrient for plant growth. Extensive soil P reserves exist in the form of organic P (P(o)), which is unavailable for root uptake until hydrolysed by secretory acid phosphatases (APases). The predominant purple APase (PAP) isozymes secreted by roots of P(i)-deficient (-P(i)) Arabidopsis thaliana were recently identified as AtPAP12 (At2g27190) and AtPAP26 (At5g34850). The present study demonstrated that exogenous P(o) compounds such as glycerol-3-phosphate or herring sperm DNA: (i) effectively substituted for P(i) in supporting the P nutrition of Arabidopsis seedlings, and (ii) caused upregulation and secretion of AtPAP12 and AtPAP26 into the growth medium. When cultivated under -P(i) conditions or supplied with P(o) as its sole source of P nutrition, an atpap26/atpap12 T-DNA double insertion mutant exhibited impaired growth coupled with >60 and >30% decreases in root secretory APase activity and rosette total P(i) concentration, respectively. Development of the atpap12/atpap26 mutant was unaffected during growth on P(i)-replete medium but was completely arrested when 7-day-old P(i)-sufficient seedlings were transplanted into a -P(i), P(o)-containing soil mix. Both PAPs were also strongly upregulated on root surfaces and in shoot cell-wall extracts of -P(i) seedlings. It is hypothesized that secreted AtPAP12 and AtPAP26 facilitate the acclimation of Arabidopsis to nutritional Pi deficiency by: (i) functioning in the rhizosphere to scavenge P(i) from the soil's accessible P(o) pool, while (ii) recycling P(i) from endogenous phosphomonoesters that have been leaked into cell walls from the cytoplasm. Thus, AtPAP12 and AtPAP26 are promising targets for improving crop P-use efficiency.


Asunto(s)
Fosfatasa Ácida/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Fosfatasa Ácida/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Microscopía Confocal , Mutación , Compuestos Organofosforados/metabolismo , Fósforo/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa , Quinazolinonas/metabolismo , ARN de Planta/genética , Plantones/enzimología , Especificidad por Sustrato
7.
PLoS One ; 7(12): e52506, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300689

RESUMEN

The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals.


Asunto(s)
Perfilación de la Expresión Génica , Magnoliopsida/genética , Magnoliopsida/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Secuencia Conservada , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Ácido Nucleico
8.
Plant Physiol ; 150(4): 1930-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19525324

RESUMEN

The Arabidopsis (Arabidopsis thaliana) gene BT2 encodes a 41-kD protein that possesses an amino-terminal BTB domain, a central TAZ domain, and a carboxyl-terminal calmodulin-binding domain. We previously demonstrated that BT2 could activate telomerase expression in mature Arabidopsis leaves. Here, we report its distinct role in mediating diverse hormone, stress, and metabolic responses. We serendipitously discovered that steady-state expression of BT2 mRNA was regulated diurnally and controlled by the circadian clock, with maximum expression in the dark. This pattern of expression suggested that BT2 mRNA could be linked to the availability of photosynthate in the plant. Exogenous sugars decreased BT2 expression, whereas exogenous nitrogen increased expression. bt2 loss-of-function mutants displayed a hypersensitive response to both sugar-mediated inhibition of germination and abscisic acid (ABA)-mediated inhibition of germination, thus supporting a role of ABA in sugar signaling in germination and development. Moreover, constitutive expression of BT2 imparted resistance to both sugars and ABA at germination, suggesting that BT2 suppresses sugar and ABA responses. In support of the previously described antagonistic relationship between ABA and auxin, we found that BT2 positively regulated certain auxin responses in plants, as revealed by knocking down BT2 expression in the high-auxin mutant yucca. Accumulation of BT2 mRNA was affected by a variety of hormones, nutrients, and stresses, and BT2 was required for responses to many of these same factors. Together, these results suggest that BT2 is a central component of an interconnected signaling network that detects and responds to multiple inputs.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Carbohidratos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Luz , Nitratos/farmacología , Fenotipo , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/genética
9.
Plant J ; 58(6): 1004-15, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19228335

RESUMEN

Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single-strand protrusion, termed the G-overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1-like proteins. Here we show that the single-strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, recombinant POT1a and POT1b proteins from A. thaliana, and from two additional Brassicaceae species, Arabidopsis lyrata and Brassica oleracea (cauliflower), fail to bind single-strand telomeric DNA in vitro under the conditions tested. Finally, although we detected four single-strand telomeric DNA binding activities in nuclear extracts from B. oleracea, partial purification and DNA cross-linking analysis of these complexes identified proteins that are smaller than the predicted sizes of BoPOT1a or BoPOT1b. Taken together, these data suggest that POT1 proteins are not the major single-strand telomeric DNA binding activities in A. thaliana and its close relatives, underscoring the remarkable functional divergence of POT1 proteins from plants and other eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ADN de Cadena Simple/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , ADN de Plantas/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Proteínas Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Proteínas de Unión a Telómeros/genética
10.
Plant Cell ; 19(1): 23-31, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17220202

RESUMEN

Telomerase, an enzyme essential for the synthesis and maintenance of telomeric DNA and the long-term stability of the genome, is developmentally regulated in plants. Telomerase activity is abundant in reproductive organs but low or undetectable in vegetative organs. Treatment with exogenous auxin, however, overrides this developmental control and induces telomerase in mature leaves. The Arabidopsis thaliana transcription factor TELOMERASE ACTIVATOR1 (TAC1) potentiates some responses to auxin, including the induction of telomerase activity in leaves. Here, we report that BT2, a protein with BTB, TAZ, and calmodulin binding domains, is an essential component of the TAC1-mediated telomerase activation pathway. Steady state concentration of BT2 mRNA increases in response to TAC1 expression, and TAC1 specifically binds the BT2 promoter both in vitro and in yeast one-hybrid assays. Constitutive expression of BT2 induces telomerase activity in leaves, whereas a null mutation of BT2 blocks TAC1-mediated telomerase induction, indicating that BT2 acts downstream of TAC1 to regulate telomerase activity in mature vegetative organs.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Portadoras/fisiología , Telomerasa/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Ácidos Indolacéticos/farmacología , Datos de Secuencia Molecular , Mutación , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
11.
Planta ; 221(3): 352-60, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15645305

RESUMEN

The potent anticancer and antiviral compound camptothecin (CPT) is a monoterpene indole alkaloid produced by Camptotheca acuminata. In order to investigate the biosynthetic pathway of CPT, we studied the early indole pathway, a junction between primary and secondary metabolism, which generates tryptophan for both protein synthesis and indole alkaloid production. We cloned and characterized the alpha subunit of anthranilate synthase (ASA) from Camptotheca (designated CaASA), catalyzing the first committed reaction of the indole pathway. CaASA is encoded by a highly conserved gene family in Camptotheca. The two CaASA genes are differentially regulated. The level of CaASA2 is constitutively low in Camptotheca and was found mainly in the reproductive tissues in transgenic tobacco plants carrying the CaASA2 promoter and beta-glucuronidase gene fusion. CaASA1 was detected to varying degrees in all Camptotheca organs examined and transiently induced to a higher level during seedling development. The spatial and developmental regulation of CaASA1 paralleled that of the previously characterized Camptotheca gene encoding the beta subunit of tryptophan synthase as well as the accumulation of CPT. These data suggest that CaASA1, rather than CaASA2, is responsible for synthesizing precursors for CPT biosynthesis in Camptotheca and that the early indole pathway and CPT biosynthesis are coordinately regulated.


Asunto(s)
Antranilato Sintasa/genética , Camptotheca/genética , Antranilato Sintasa/metabolismo , Western Blotting , Camptotheca/enzimología , Camptotheca/crecimiento & desarrollo , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/química , ADN de Plantas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Inmunohistoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Nicotiana/genética
12.
Plant Cell ; 16(11): 2910-22, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15486103

RESUMEN

Telomerase activity is highly regulated, abundant in rapidly dividing cells and reproductive organs, but undetectable in most other differentiated tissues. Little is known about mechanisms that regulate telomerase. Here, we used a biochemical assay to screen activation-tagged lines of Arabidopsis thaliana for mutants that ectopically express this enzyme in their leaves. In one such mutant, a previously uncharacterized zinc-finger protein we designate TELOMERASE ACTIVATOR1 (TAC1) is overexpressed and induces telomerase in fully differentiated leaves without stimulating progression through the cell cycle. Reducing endogenous concentrations of auxin in the mutant blocks the ability of TAC1 to induce telomerase. This result, along with other phenotypes of the mutant, such as the ability of cells to grow in culture without exogenous auxin and increased sensitivity of primary root growth to exogenous auxin, indicates that TAC1 not only is part of the previously reported link between auxin and telomerase expression but also potentiates other classic responses to this phytohormone.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Activadores de Enzimas/metabolismo , Ácidos Indolacéticos/metabolismo , Telomerasa/metabolismo , Secuencia de Aminoácidos/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Ciclo Celular/genética , ADN Complementario/análisis , ADN Complementario/genética , Resistencia a Medicamentos/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Activadores de Enzimas/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/farmacología , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Dedos de Zinc/genética
14.
Plant Mol Biol ; 48(4): 331-7, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11905960

RESUMEN

Telomeres, the complex nucleoprotein structures at the ends of linear eukaryotic chromosomes, along with telomerase, the enzyme that synthesizes telomeric DNA, are required to maintain a stable genome. Together, the enzyme and substrate perform this essential service by protecting chromosomes from exonucleolytic degradation and end-to-end fusions and by compensating for the inability of conventional DNA replication machinery to completely duplicate the ends of linear chromosomes. Telomeres are also important for chromosome organization within the nucleus, especially during mitosis and meiosis. The contributions of telomeres and telomerases to plant genome stability have been confirmed by analysis of Arabidopsis mutants that lack telomerase activity. These mutants have unstable genomes, but manage to survive up to ten generations with increasingly shortened telomeres and cytogenetic abnormalities. Comparisons between telomerase-deficient Arabidopsis and telomerase-deficient mice reveal distinct differences in the consequences of massive genome damage, probably reflecting the greater developmental and genomic plasticity of plants.


Asunto(s)
Genoma de Planta , Telomerasa/metabolismo , Telómero/genética , Plantas/genética , Plantas/metabolismo , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA