Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496498

RESUMEN

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

2.
EMBO J ; 43(1): 112-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177314

RESUMEN

Transposable elements have created the majority of the sequence in many genomes. In mammals, LINE-1 retrotransposons have been expanding for more than 100 million years as distinct, consecutive lineages; however, the drivers of this recurrent lineage emergence and disappearance are unknown. Most human genome assemblies provide a record of this ancient evolution, but fail to resolve ongoing LINE-1 retrotranspositions. Utilizing the human CHM1 long-read-based haploid assembly, we identified and cloned all full-length, intact LINE-1s, and found 29 LINE-1s with measurable in vitro retrotransposition activity. Among individuals, these LINE-1s varied in their presence, their allelic sequences, and their activity. We found that recently retrotransposed LINE-1s tend to be active in vitro and polymorphic in the population relative to more ancient LINE-1s. However, some rare allelic forms of old LINE-1s retain activity, suggesting older lineages can persist longer than expected. Finally, in LINE-1s with in vitro activity and in vivo fitness, we identified mutations that may have increased replication in ancient genomes and may prove promising candidates for mechanistic investigations of the drivers of LINE-1 evolution and which LINE-1 sequences contribute to human disease.


Asunto(s)
Genoma Humano , Elementos de Nucleótido Esparcido Largo , Animales , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos , Mamíferos/genética , Mutación , Evolución Molecular
3.
PLoS Genet ; 19(10): e1010972, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37812589

RESUMEN

Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.


Asunto(s)
Encefalopatías , Microcefalia , Humanos , Niño , Saccharomyces cerevisiae/genética , Encefalopatías/genética , Microcefalia/genética , Genotipo , Serina
4.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36711904

RESUMEN

Background: Pathogenic variants in PHGDH, PSAT1 , and PSPH cause a set of rare, autosomal recessive diseases known as serine biosynthesis defects. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately in the form of infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, as childhood disease with intellectual disability. However, because L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is highly actionable. Methods: Recently, our laboratory established a yeast-based assay for human PSAT1 function. We have now applied it at scale to assay the functional impact of 1,914 SNV-accessible amino acid substitutions. In addition to assaying the functional impact of individual variants in yeast haploid cells, we can assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results: Results of our assays of individual variants (in haploid yeast cells) agree well with clinical interpretations and protein structure-function relationships, supporting the use of our data as functional evidence under the ACMG interpretation guidelines. Results from our diploid assay successfully distinguish patient genotypes from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements (in haploid yeast cells) to accurately predict the biallelic function (in diploid yeast cells) of ~ 1.8 million allele combinations corresponding to potential human genotypes. Conclusions: Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of a rare disease.

5.
Science ; 378(6618): 356-357, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36302006

RESUMEN

The human genome contains a domesticated viral envelope gene with antiviral activity.


Asunto(s)
Betaretrovirus , Genes env , Genoma Humano , Proteínas Gestacionales , Humanos , Betaretrovirus/genética , Proteínas Gestacionales/genética
6.
Dev Cell ; 57(6): 750-766.e5, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35303431

RESUMEN

Curvature-sensing mechanisms assist proteins in executing particular actions on various membrane organelles. Here, we investigate the functional specificity of curvature-sensing amphipathic motifs in Caenorhabditis elegans through the study of endophilin, an endocytic protein for synaptic vesicle recycling. We generate chimeric endophilin proteins by replacing the endophilin amphipathic motif H0 with other curvature-sensing amphipathic motifs. We find that the role of amphipathic motifs cannot simply be extrapolated from the identity of their parental proteins. For example, the amphipathic motif of the nuclear pore complex protein NUP133 functionally replaces the synaptic role of endophilin H0. Interestingly, non-functional endophilin chimeras have similar defects-producing fewer synaptic vesicles but more endosomes-and this indicates that the curvature-sensing motifs in these chimeras have a common deficiency for reforming synaptic vesicles. Finally, we convert non-functional endophilin chimeras into functional proteins by changing the cationic property of amphipathic motifs, successfully reprogramming the functional specificity of curvature-sensing motifs in vivo.


Asunto(s)
Vesículas Sinápticas , Aciltransferasas/química , Aciltransferasas/fisiología , Secuencias de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Electricidad Estática , Vesículas Sinápticas/metabolismo
7.
Elife ; 92020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479260

RESUMEN

Host-virus arms races are inherently asymmetric; viruses evolve much more rapidly than host genomes. Thus, there is high interest in discovering mechanisms by which host genomes keep pace with rapidly evolving viruses. One family of restriction factors, the APOBEC3 (A3) cytidine deaminases, has undergone positive selection and expansion via segmental gene duplication and recombination. Here, we show that new copies of A3 genes have also been created in primates by reverse transcriptase-encoding elements like LINE-1 or endogenous retroviruses via a process termed retrocopying. First, we discovered that all simian primate genomes retain the remnants of an ancient A3 retrocopy: A3I. Furthermore, we found that some New World monkeys encode up to ten additional APOBEC3G (A3G) retrocopies. Some of these A3G retrocopies are transcribed in a variety of tissues and able to restrict retroviruses. Our findings suggest that host genomes co-opt retroelement activity in the germline to create new host restriction factors as another means to keep pace with the rapid evolution of viruses. (163).


Asunto(s)
Desaminasas APOBEC , Antivirales/metabolismo , Duplicación de Gen/genética , Interacciones Huésped-Patógeno , Retroelementos/genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Animales , Dosificación de Gen/genética , Células HEK293 , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Mutación/genética , Primates/genética , Retroviridae/genética , Retroviridae/patogenicidad
8.
PLoS Biol ; 17(10): e3000181, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31574080

RESUMEN

Antagonistic interactions drive host-virus evolutionary arms races, which often manifest as recurrent amino acid changes (i.e., positive selection) at their protein-protein interaction interfaces. Here, we investigated whether combinatorial mutagenesis of positions under positive selection in a host antiviral protein could enhance its restrictive properties. We tested approximately 700 variants of human MxA, generated by combinatorial mutagenesis, for their ability to restrict Thogotovirus (THOV). We identified MxA super-restrictors with increased binding to the THOV nucleoprotein (NP) target protein and 10-fold higher anti-THOV restriction relative to wild-type human MxA, the most potent naturally occurring anti-THOV restrictor identified. Our findings reveal a means to elicit super-restrictor antiviral proteins by leveraging signatures of positive selection. Although some MxA super-restrictors of THOV were impaired in their restriction of H5N1 influenza A virus (IAV), other super-restrictor variants increased THOV restriction without impairment of IAV restriction. Thus, broadly acting antiviral proteins such as MxA mitigate breadth-versus-specificity trade-offs that could otherwise constrain their adaptive landscape.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Proteínas de Resistencia a Mixovirus/genética , Nucleoproteínas/genética , Thogotovirus/genética , Proteínas Virales/genética , Secuencias de Aminoácidos , Línea Celular Tumoral , Evolución Molecular , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , Especificidad del Huésped , Humanos , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Mutagénesis , Proteínas de Resistencia a Mixovirus/inmunología , Proteínas de Resistencia a Mixovirus/metabolismo , Nucleoproteínas/metabolismo , Transducción de Señal , Thogotovirus/metabolismo , Proteínas Virales/metabolismo
9.
PLoS Pathog ; 15(7): e1007925, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31260493

RESUMEN

HIV-1 does not persistently infect macaques due in part to restriction by several macaque host factors. This has been partially circumvented by generating chimeric SIV/HIV-1 viruses (SHIVs) that encode SIV antagonist of known restriction factors. However, most SHIVs replicate poorly in macaques unless they are further adapted in culture and/or macaques (adapted SHIVs). Therefore, development of SHIVs encoding HIV-1 sequences derived directly from infected humans without adaptation (unadapted SHIVs) has been challenging. In contrast to the adapted SHIVs, the unadapted SHIVs have lower replication kinetics in macaque lymphocytes and are sensitive to type-1 interferon (IFN). The HIV-1 Envelope (Env) in the chimeric virus determines both the reduced replication and the IFN-sensitivity differences. There is limited information on macaque restriction factors that specifically limit replication of the more biologically relevant, unadapted SHIV variants. In order to identify the IFN-induced host factor(s) that could contribute to the inhibition of SHIVs in macaque lymphocytes, we measured IFN-induced gene expression in immortalized pig-tailed macaque (Ptm) lymphocytes using RNA-Seq. We found 147 genes that were significantly upregulated upon IFN treatment in Ptm lymphocytes and 31/147 were identified as genes that encode transmembrane helices and thus are likely present in membranes where interaction with viral Env is plausible. Within this group of upregulated genes with putative membrane-localized proteins, we identified several interferon-induced transmembrane protein (IFITM) genes, including several previously uncharacterized Ptm IFITM3-related genes. An evolutionary genomic analysis of these genes suggests the genes are IFITM3 duplications not found in humans that are both within the IFITM locus and also dispersed elsewhere in the Ptm genome. We observed that Ptm IFITMs are generally packaged at higher levels in unadapted SHIVs when compared to adapted SHIVs. CRISPR/Cas9-mediated knockout of Ptm IFITMs showed that depletion of IFITMs partially rescues the IFN sensitivity of unadapted SHIV. Moreover, we found that the depletion of IFITMs also increased replication of unadapted SHIV in the absence of IFN treatment, suggesting that Ptm IFITMs are likely important host factors that limit replication of unadapted SHIVs. In conclusion, this study shows that Ptm IFITMs selectively restrict replication of unadapted SHIVs. These findings suggest that restriction factors including IFITMs vary in their potency against different SHIV variants and may play a role in selecting for viruses that adapt to species-specific restriction factors.


Asunto(s)
VIH-1/fisiología , VIH-1/patogenicidad , Virus de la Inmunodeficiencia de los Simios/fisiología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Productos del Gen env del Virus de la Inmunodeficiencia Humana/fisiología , Adaptación Fisiológica , Animales , Genes env , VIH-1/genética , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Especificidad del Huésped , Humanos , Interferón-alfa/metabolismo , Macaca nemestrina/genética , Macaca nemestrina/inmunología , Macaca nemestrina/virología , Procesamiento Proteico-Postraduccional , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Virus Reordenados/fisiología , Virus de la Inmunodeficiencia de los Simios/genética , Replicación Viral
10.
PLoS Biol ; 16(3): e2005470, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29505560

RESUMEN

Transposable elements comprise a huge portion of most animal genomes. Unlike many pathogens, these elements leave a mark of their impact via their insertion into host genomes. With proper teasing, these sequences can relay information about the evolutionary history of transposons and their hosts. In a new publication, Larson and colleagues describe a previously unappreciated density of long interspersed element-1 (LINE-1) sequences that have been spliced (LINE-1 and other reverse transcribing elements are necessarily intronless). They provide data to suggest that the retention of these potentially deleterious splice sites in LINE-1 results from the sites' overlap with an important transcription factor binding site. These spliced LINE-1s (i.e., spliced integrated retrotransposed elements [SpiREs]) lose their ability to replicate, suggesting they are evolutionary dead ends. However, the lethality of this splicing could be an efficient means of blocking continued replication of LINE-1. In this way, the record of inactive LINE-1 sequences in the human genome revealed a new, though infrequent, event in the LINE-1 replication cycle and motivates future studies to test whether splicing might be another weapon in the anti-LINE-1 arsenal of host genomes.


Asunto(s)
Genoma Humano , Lectura , Animales , Elementos Transponibles de ADN , Humanos , Elementos de Nucleótido Esparcido Largo ,
11.
J Exp Biol ; 220(Pt 1): 6-17, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28057823

RESUMEN

Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements.


Asunto(s)
Evolución Molecular , Genoma , Adaptación Fisiológica , Animales , Evolución Biológica , Elementos Transponibles de ADN , Interacción Gen-Ambiente , Interacciones Huésped-Patógeno , Humanos , Meiosis , Modelos Genéticos , Selección Genética
12.
Mol Biol Evol ; 33(8): 1889-901, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27189538

RESUMEN

LINE-1 (long interspersed element-1) retroelements are the only active autonomous endogenous retroelements in human genomes. Their retrotransposition activity has created close to 50% of the current human genome. Due to the apparent costs of this proliferation, host genomes have evolved multiple mechanisms to curb LINE-1 retrotransposition. Here, we investigate the evolution and function of the LINE-1 restriction factor APOBEC3A, a member of the APOBEC3 cytidine deaminase gene family. We find that APOBEC3A genes have evolved rapidly under diversifying selection in primates, suggesting changes in APOBEC3A have been recurrently selected in a host-pathogen "arms race." Nonetheless, in contrast to previous reports, we find that the LINE-1 restriction activity of APOBEC3A proteins has been strictly conserved throughout simian primate evolution in spite of its pervasive diversifying selection. Based on these results, we conclude that LINE-1s have not driven the rapid evolution of APOBEC3A in primates. In contrast to this conserved LINE-1 restriction, we find that a subset of primate APOBEC3A genes have enhanced antiviral restriction. We trace this gain of antiviral restriction in APOBEC3A to the common ancestor of a subset of Old World monkeys. Thus, APOBEC3A has not only maintained its LINE-1 restriction ability, but also evolved a gain of antiviral specificity against other pathogens. Our findings suggest that while APOBEC3A has evolved to restrict additional pathogens, only those adaptive amino acid changes that leave LINE-1 restriction unperturbed have been tolerated.


Asunto(s)
Citidina Desaminasa/genética , Elementos de Nucleótido Esparcido Largo , Proteínas/genética , Animales , Evolución Biológica , Cercopithecidae , Citidina Desaminasa/metabolismo , Evolución Molecular , Genoma Humano , Humanos , Primates , Proteínas/metabolismo , Retroelementos
14.
PLoS Genet ; 10(9): e1004531, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25211013

RESUMEN

Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to 'domesticate' retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1) retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has 'replenished' itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages.


Asunto(s)
Genoma/genética , Elementos de Nucleótido Esparcido Largo/genética , Mamíferos/genética , Proteínas/genética , Animales , Evolución Biológica , Humanos , Ratones , Filogenia , Retroelementos/genética , Roedores/genética
15.
Nature ; 491(7422): 138-42, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23041932

RESUMEN

Statistical analysis of protein evolution suggests a design for natural proteins in which sparse networks of coevolving amino acids (termed sectors) comprise the essence of three-dimensional structure and function. However, proteins are also subject to pressures deriving from the dynamics of the evolutionary process itself--the ability to tolerate mutation and to be adaptive to changing selection pressures. To understand the relationship of the sector architecture to these properties, we developed a high-throughput quantitative method for a comprehensive single-mutation study in which every position is substituted individually to every other amino acid. Using a PDZ domain (PSD95(pdz3)) model system, we show that sector positions are functionally sensitive to mutation, whereas non-sector positions are more tolerant to substitution. In addition, we find that adaptation to a new binding specificity initiates exclusively through variation within sector residues. A combination of just two sector mutations located near and away from the ligand-binding site suffices to switch the binding specificity of PSD95(pdz3) quantitatively towards a class-switching ligand. The localization of functional constraint and adaptive variation within the sector has important implications for understanding and engineering proteins.


Asunto(s)
Adaptación Fisiológica , Sustitución de Aminoácidos , Proteínas Mutantes/química , Dominios PDZ/genética , Dominios PDZ/fisiología , Proteínas/química , Proteínas/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Secuencia de Aminoácidos , Sitios de Unión/genética , Evolución Molecular , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Proteínas/genética
16.
Cell ; 147(7): 1564-75, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196731

RESUMEN

Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and coevolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that: (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis, and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved "wiring" mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation.


Asunto(s)
Regulación Alostérica , Escherichia coli/enzimología , Modelos Moleculares , Proteínas/química , Escherichia coli/metabolismo , Evolución Molecular , Dominios PDZ , Proteínas/genética , Proteínas/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...