Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441968

RESUMEN

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador , Corazón , Hígado/diagnóstico por imagen , Hígado/metabolismo , Isótopos de Carbono/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(49): e2312261120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011568

RESUMEN

While radical prostatectomy remains the mainstay of prostate cancer (PCa) treatment, 20 to 40% of patients develop postsurgical biochemical recurrence (BCR). A particularly challenging clinical cohort includes patients with intermediate-risk disease whose risk stratification would benefit from advanced approaches that complement standard-of-care diagnostic tools. Here, we show that imaging tumor lactate using hyperpolarized 13C MRI and spatial metabolomics identifies BCR-positive patients in two prospective intermediate-risk surgical cohorts. Supported by spatially resolved tissue analysis of established glycolytic biomarkers, this study provides the rationale for multicenter trials of tumor metabolic imaging as an auxiliary tool to support PCa treatment decision-making.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Antígeno Prostático Específico/análisis , Ácido Láctico , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Próstata/patología , Prostatectomía/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos
3.
ArXiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37731660

RESUMEN

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.

4.
Front Endocrinol (Lausanne) ; 13: 1066208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440187

RESUMEN

There is increasing evidence to support the use of temozolomide therapy for the treatment of metastatic phaeochromocytoma/paraganglioma (PPGL) in adults, particularly in patients with SDHx mutations. In children however, very little data is available. In this report, we present the case of a 12-year-old female with a SDHB-related metastatic paraganglioma treated with surgery followed by temozolomide therapy. The patient presented with symptoms of palpitations, sweating, flushing and hypertension and was diagnosed with a paraganglioma. The primary mass was surgically resected six weeks later after appropriate alpha- and beta-blockade. During the surgery extensive nodal disease was identified that had been masked by the larger paraganglioma. Histological review confirmed a diagnosis of a metastatic SDHB-deficient paraganglioma with nodal involvement. Post-operatively, these nodal lesions demonstrated tracer uptake on 18F-FDG PET-CT. Due to poor tumour tracer uptake on 68Ga-DOTATATE and 123I-MIBG functional imaging studies radionuclide therapy was not undertaken as a potential therapeutic option for this patient. Due to the low tumour burden and lack of clinical symptoms, the multi-disciplinary team opted for close surveillance for the first year, during which time the patient continued to thrive and progress through puberty. 13 months after surgery, evidence of radiological and biochemical progression prompted the decision to start systemic monotherapy using temozolomide. The patient has now completed ten cycles of therapy with limited adverse effects and has benefited from a partial radiological and biochemical response.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Neoplasias Encefálicas , Neoplasias Primarias Secundarias , Paraganglioma , Feocromocitoma , Adulto , Femenino , Humanos , Niño , Feocromocitoma/genética , Temozolomida/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Paraganglioma/tratamiento farmacológico , Paraganglioma/genética , Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico
5.
BJR Open ; 4(1): 20210078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105417

RESUMEN

Objectives: To investigate the relationship between magnetization transfer (MT) imaging and tissue macromolecules in high-grade serous ovarian cancer (HGSOC) and whether MT ratio (MTR) changes following neoadjuvant chemotherapy (NACT). Methods: This was a prospective observational study. 12 HGSOC patients were imaged before treatment. MTR was compared to quantified tissue histology and immunohistochemistry. For a subset of patients (n = 5), MT imaging was repeated after NACT. The Shapiro-Wilk test was used to assess for normality of data and Spearman's rank-order or Pearson's correlation tests were then used to compare MTR with tissue quantifications. The Wilcoxon signed-rank test was used to assess for changes in MTR after treatment. Results: Treatment-naïve tumour MTR was 21.9 ± 3.1% (mean ± S.D.). MTR had a positive correlation with cellularity, rho = 0.56 (p < 0.05) and a negative correlation with tumour volume, ρ = -0.72 (p = 0.01). MTR did not correlate with the extracellular proteins, collagen IV or laminin (p = 0.40 and p = 0.90). For those patients imaged before and after NACT, an increase in MTR was observed in each case with mean MTR 20.6 ± 3.1% (median 21.1) pre-treatment and 25.6 ± 3.4% (median 26.5) post-treatment (p = 0.06). Conclusion: In treatment-naïve HGSOC, MTR is associated with cellularity, possibly reflecting intracellular macromolecular concentration. MT may also detect the HGSOC response to NACT, however larger studies are required to validate this finding. Advances in knowledge: MTR in HGSOC is influenced by cellularity. This may be applied to assess for cell changes following treatment.

6.
Radiol Imaging Cancer ; 4(4): e210076, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35838532

RESUMEN

Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.


Asunto(s)
Glioblastoma , Bicarbonatos , Glioblastoma/diagnóstico por imagen , Humanos , Lactato Deshidrogenasa 5 , Ácido Láctico , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Ácido Pirúvico/metabolismo
7.
Eur Radiol ; 32(10): 7155-7162, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35731287

RESUMEN

Hyperpolarised [1-13C]pyruvate MRI (HP-13C-MRI) is an emerging metabolic imaging technique that has shown promise for evaluating prostate cancer (PCa) aggressiveness. Accurate tumour delineation on HP-13C-MRI is vital for quantitative assessment of the underlying tissue metabolism. However, there is no consensus on the optimum method for segmenting HP-13C-MRI, and whole-mount pathology (WMP) as the histopathological gold-standard is only available for surgical patients. Although proton MRI can be used for tumour delineation, this approach significantly underestimates tumour volume, and metabolic tumour segmentation based on HP-13C-MRI could provide an important functional metric of tumour volume. In this study, we quantified metabolism using HP-13C-MRI and segmentation approaches based on WMP maps, 1H-MRI-derived T2-weighted imaging (T2WI), and HP-13C-MRI-derived total carbon signal-to-noise ratio maps (TC-SNR) with an SNR threshold of 5.0. 13C-labelled pyruvate SNR, lactate SNR, TC-SNR, and the pyruvate-to-lactate exchange rate constant (kPL) were significantly higher when measured using the TC-SNR-guided approach, which also corresponded to a significantly higher tumour epithelial expression on RNAscope imaging of the enzyme catalysing pyruvate-to-lactate metabolism (lactate dehydrogenase (LDH)). However, linear regression and Bland-Altman analyses demonstrated a strong linear relationship between all three segmentation approaches, which correlated significantly with RNA-scope-derived epithelial LDH expression. These results suggest that standard-of-care T2WI and TC-SNR maps could be used as clinical reference tools for segmenting localised PCa on HP-13C-MRI in the absence of the WMP gold standard. The TC-SNR-guided approach could be used clinically to target biopsies towards highly glycolytic tumour areas and therefore to sample aggressive disease with higher precision. KEY POINTS: • T2WI- and TC-SNR-guided segmentations can be used in all PCa patients and do not explicitly require WMP maps. • Agreement between the three segmentation approaches is biologically validated by their strong relationship with epithelial LDH mRNA expression. • The TC-SNR-guided approach can potentially be used to identify occult disease on 1H-MRI and target the most glycolytically active regions.


Asunto(s)
Neoplasias de la Próstata , Humanos , Lactatos , Imagen por Resonancia Magnética/métodos , Masculino , Neoplasias de la Próstata/patología , Ácido Pirúvico/metabolismo , Carga Tumoral
8.
Neuroimage ; 257: 119284, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35533826

RESUMEN

Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1-2 h after oral administration of [6,6'-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1-13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.


Asunto(s)
Bicarbonatos , Imagen por Resonancia Magnética , Bicarbonatos/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Deuterio/metabolismo , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Ácido Pirúvico
9.
Br J Cancer ; 127(2): 337-349, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35462561

RESUMEN

BACKGROUND: Breast cancer remains a leading cause of death in women and novel imaging biomarkers are urgently required. Here, we demonstrate the diagnostic and treatment-monitoring potential of non-invasive sodium (23Na) MRI in preclinical models of breast cancer. METHODS: Female Rag2-/- Il2rg-/- and Balb/c mice bearing orthotopic breast tumours (MDA-MB-231, EMT6 and 4T1) underwent MRI as part of a randomised, controlled, interventional study. Tumour biology was probed using ex vivo fluorescence microscopy and electrophysiology. RESULTS: 23Na MRI revealed elevated sodium concentration ([Na+]) in tumours vs non-tumour regions. Complementary proton-based diffusion-weighted imaging (DWI) linked elevated tumour [Na+] to increased cellularity. Combining 23Na MRI and DWI measurements enabled superior classification accuracy of tumour vs non-tumour regions compared with either parameter alone. Ex vivo assessment of isolated tumour slices confirmed elevated intracellular [Na+] ([Na+]i); extracellular [Na+] ([Na+]e) remained unchanged. Treatment with specific inward Na+ conductance inhibitors (cariporide, eslicarbazepine acetate) did not affect tumour [Na+]. Nonetheless, effective treatment with docetaxel reduced tumour [Na+], whereas DWI measures were unchanged. CONCLUSIONS: Orthotopic breast cancer models exhibit elevated tumour [Na+] that is driven by aberrantly elevated [Na+]i. Moreover, 23Na MRI enhances the diagnostic capability of DWI and represents a novel, non-invasive biomarker of treatment response with superior sensitivity compared to DWI alone.


Asunto(s)
Neoplasias de la Mama , Sodio , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Medios de Contraste , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Ratones
11.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053497

RESUMEN

Differentiating aggressive clear cell renal cell carcinoma (ccRCC) from indolent lesions is challenging using conventional imaging. This work prospectively compared the metabolic imaging phenotype of renal tumors using carbon-13 MRI following injection of hyperpolarized [1-13C]pyruvate (HP-13C-MRI) and validated these findings with histopathology. Nine patients with treatment-naïve renal tumors (6 ccRCCs, 1 liposarcoma, 1 pheochromocytoma, 1 oncocytoma) underwent pre-operative HP-13C-MRI and conventional proton (1H) MRI. Multi-regional tissue samples were collected using patient-specific 3D-printed tumor molds for spatial registration between imaging and molecular analysis. The apparent exchange rate constant (kPL) between 13C-pyruvate and 13C-lactate was calculated. Immunohistochemistry for the pyruvate transporter (MCT1) from 44 multi-regional samples, as well as associations between MCT1 expression and outcome in the TCGA-KIRC dataset, were investigated. Increasing kPL in ccRCC was correlated with increasing overall tumor grade (ρ = 0.92, p = 0.009) and MCT1 expression (r = 0.89, p = 0.016), with similar results acquired from the multi-regional analysis. Conventional 1H-MRI parameters did not discriminate tumor grades. The correlation between MCT1 and ccRCC grade was confirmed within a TCGA dataset (p < 0.001), where MCT1 expression was a predictor of overall and disease-free survival. In conclusion, metabolic imaging using HP-13C-MRI differentiates tumor aggressiveness in ccRCC and correlates with the expression of MCT1, a predictor of survival. HP-13C-MRI may non-invasively characterize metabolic phenotypes within renal cancer.

12.
Nat Commun ; 13(1): 466, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075123

RESUMEN

Hyperpolarised magnetic resonance imaging (HP 13C-MRI) is an emerging clinical technique to detect [1-13C]lactate production in prostate cancer (PCa) following intravenous injection of hyperpolarised [1-13C]pyruvate. Here we differentiate clinically significant PCa from indolent disease in a low/intermediate-risk population by correlating [1-13C]lactate labelling on MRI with the percentage of Gleason pattern 4 (%GP4) disease. Using immunohistochemistry and spatial transcriptomics, we show that HP 13C-MRI predominantly measures metabolism in the epithelial compartment of the tumour, rather than the stroma. MRI-derived tumour [1-13C]lactate labelling correlated with epithelial mRNA expression of the enzyme lactate dehydrogenase (LDHA and LDHB combined), and the ratio of lactate transporter expression between the epithelial and stromal compartments (epithelium-to-stroma MCT4). We observe similar changes in MCT4, LDHA, and LDHB between tumours with primary Gleason patterns 3 and 4 in an independent TCGA cohort. Therefore, HP 13C-MRI can metabolically phenotype clinically significant disease based on underlying metabolic differences in the epithelial and stromal tumour compartments.


Asunto(s)
Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Células Epiteliales/metabolismo , Glucólisis , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estudios Prospectivos , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Ácido Pirúvico/metabolismo , Células del Estroma/metabolismo
13.
Magn Reson Med ; 87(3): 1301-1312, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687088

RESUMEN

PURPOSE: Dynamic nuclear polarization is an emerging imaging method that allows noninvasive investigation of tissue metabolism. However, the relatively low metabolic spatial resolution that can be achieved limits some applications, and improving this resolution could have important implications for the technique. METHODS: We propose to enhance the 3D resolution of carbon-13 magnetic resonance imaging (13 C-MRI) using the structural information provided by hydrogen-1 MRI (1 H-MRI). The proposed approach relies on variational regularization in 3D with a directional total variation regularizer, resulting in a convex optimization problem which is robust with respect to the parameters and can efficiently be solved by many standard optimization algorithms. Validation was carried out using an in silico phantom, an in vitro phantom and in vivo data from four human volunteers. RESULTS: The clinical data used in this study were upsampled by a factor of 4 in-plane and by a factor of 15 out-of-plane, thereby revealing occult information. A key finding is that 3D super-resolution shows superior performance compared to several 2D super-resolution approaches: for example, for the in silico data, the mean-squared-error was reduced by around 40% and for all data produced increased anatomical definition of the metabolic imaging. CONCLUSION: The proposed approach generates images with enhanced anatomical resolution while largely preserving the quantitative measurements of metabolism. Although the work requires clinical validation against tissue measures of metabolism, it offers great potential in the field of 13 C-MRI and could significantly improve image quality in the future.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Isótopos de Carbono , Humanos , Fantasmas de Imagen
14.
Cancer Res ; 81(23): 6004-6017, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625424

RESUMEN

Hyperpolarized 13C-MRI is an emerging tool for probing tissue metabolism by measuring 13C-label exchange between intravenously injected hyperpolarized [1-13C]pyruvate and endogenous tissue lactate. Here, we demonstrate that hyperpolarized 13C-MRI can be used to detect early response to neoadjuvant therapy in breast cancer. Seven patients underwent multiparametric 1H-MRI and hyperpolarized 13C-MRI before and 7-11 days after commencing treatment. An increase in the lactate-to-pyruvate ratio of approximately 20% identified three patients who, following 5-6 cycles of treatment, showed pathological complete response. This ratio correlated with gene expression of the pyruvate transporter MCT1 and lactate dehydrogenase A (LDHA), the enzyme catalyzing label exchange between pyruvate and lactate. Analysis of approximately 2,000 breast tumors showed that overexpression of LDHA and the hypoxia marker CAIX was associated with reduced relapse-free and overall survival. Hyperpolarized 13C-MRI represents a promising method for monitoring very early treatment response in breast cancer and has demonstrated prognostic potential. SIGNIFICANCE: Hyperpolarized carbon-13 MRI allows response assessment in patients with breast cancer after 7-11 days of neoadjuvant chemotherapy and outperformed state-of-the-art and research quantitative proton MRI techniques.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/patología , Isótopos de Carbono/análisis , Imagen por Resonancia Magnética/métodos , Terapia Neoadyuvante/métodos , Recurrencia Local de Neoplasia/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Tasa de Supervivencia
15.
J Immunother Cancer ; 9(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34561275

RESUMEN

BACKGROUND: Immune checkpoint inhibitors are now standard of care treatment for many cancers. Treatment failure in metastatic melanoma is often due to tumor heterogeneity, which is not easily captured by conventional CT or tumor biopsy. The aim of this prospective study was to investigate early microstructural and functional changes within melanoma metastases following immune checkpoint blockade using multiparametric MRI. METHODS: Fifteen treatment-naïve metastatic melanoma patients (total 27 measurable target lesions) were imaged at baseline and following 3 and 12 weeks of treatment on immune checkpoint inhibitors using: T2-weighted imaging, diffusion kurtosis imaging, and dynamic contrast-enhanced MRI. Treatment timepoint changes in tumor cellularity, vascularity, and heterogeneity within individual metastases were evaluated and correlated to the clinical outcome in each patient based on Response Evaluation Criteria in Solid Tumors V.1.1 at 1 year. RESULTS: Differential tumor growth kinetics in response to immune checkpoint blockade were measured in individual metastases within the same patient, demonstrating significant intertumoral heterogeneity in some patients. Early detection of tumor cell death or cell loss measured by a significant increase in the apparent diffusivity (Dapp) (p<0.05) was observed in both responding and pseudoprogressive lesions after 3 weeks of treatment. Tumor heterogeneity, as measured by apparent diffusional kurtosis (Kapp), was consistently higher in the pseudoprogressive and true progressive lesions, compared with the responding lesions throughout the first 12 weeks of treatment. These preceded tumor regression and significant tumor vascularity changes (Ktrans, ve, and vp) detected after 12 weeks of immunotherapy (p<0.05). CONCLUSIONS: Multiparametric MRI demonstrated potential for early detection of successful response to immune checkpoint inhibitors in metastatic melanoma.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Melanoma/diagnóstico por imagen , Melanoma/tratamiento farmacológico , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Anciano , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad , Masculino , Persona de Mediana Edad
16.
Magn Reson Med ; 86(3): 1734-1745, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33934383

RESUMEN

PURPOSE: An unmet need in carbon-13 (13 C)-MRI is a transmit system that provides uniform excitation across a large FOV and can accommodate patients of wide-ranging body habitus. Due to the small difference between the resonant frequencies, sodium-23 (23 Na) coil developments can inform 13 C coil design while being simpler to assess due to the higher naturally abundant 23 Na signal. Here we present a removable 23 Na birdcage, which also allows operation as a 13 C abdominal coil. METHODS: We demonstrate a quadrature-driven 4-rung 23 Na birdcage coil of 50 cm in length for both 23 Na and 13 C abdominal imaging. The coil transmit efficiencies and B1+ maps were compared to a linearly driven 13 C Helmholtz-based (clamshell) coil. SNR was investigated with 23 Na and 13 C data using an 8-channel 13 C receive array within the 23 Na birdcage. RESULTS: The 23 Na birdcage longitudinal FOV was > 40 cm, whereas the 13 C clamshell was < 32 cm. The transmit efficiency of the birdcage at the 23 Na frequency was 0.65 µT/sqrt(W), similar to the clamshell for 13 C. However, the coefficient of variation of 23 Na- B1+ was 16%, nearly half that with the 13 C clamshell. The 8-channel 13 C receive array combined with the 23 Na birdcage coil generated a greater than twofold increase in 23 Na-SNR from the central abdomen compared with the birdcage alone. DISCUSSION: This 23 Na birdcage coil has a larger FOV and improved B1+ uniformity when compared to the widely used clamshell coil design while also providing similar transmit efficiency. The coil has the potential to be used for both 23 Na and 13 C imaging.


Asunto(s)
Imagen por Resonancia Magnética , Sodio , Abdomen , Diseño de Equipo , Humanos , Fantasmas de Imagen
17.
Sci Rep ; 11(1): 8857, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893338

RESUMEN

Measurements of water diffusion with MRI have been used as a biomarker of tissue microstructure and heterogeneity. In this study, diffusion kurtosis tensor imaging (DKTI) of the brain was undertaken in 10 healthy volunteers at a clinical field strength of 3 T. Diffusion and kurtosis metrics were measured in regions-of-interest on the resulting maps and compared with quantitative analysis of normal post-mortem tissue histology from separate age-matched donors. White matter regions showed low diffusion (0.60 ± 0.04 × 10-3 mm2/s) and high kurtosis (1.17 ± 0.06), consistent with a structured heterogeneous environment comprising parallel neuronal fibres. Grey matter showed intermediate diffusion (0.80 ± 0.02 × 10-3 mm2/s) and kurtosis (0.82 ± 0.05) values. An important finding is that the subcortical regions investigated (thalamus, caudate and putamen) showed similar diffusion and kurtosis properties to white matter. Histological staining of the subcortical nuclei demonstrated that the predominant grey matter was permeated by small white matter bundles, which could account for the similar kurtosis to white matter. Quantitative histological analysis demonstrated higher mean tissue kurtosis and vector standard deviation values for white matter (1.08 and 0.81) compared to the subcortical regions (0.34 and 0.59). Mean diffusion on DKTI was positively correlated with tissue kurtosis (r = 0.82, p < 0.05) and negatively correlated with vector standard deviation (r = -0.69, p < 0.05). This study demonstrates how DKTI can be used to study regional structural variations in the cerebral tissue microenvironment and could be used to probe microstructural changes within diseased tissue in the future.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Adulto , Femenino , Humanos , Masculino , Adulto Joven
18.
Magn Reson Med ; 85(5): 2370-2376, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33274790

RESUMEN

PURPOSE: The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X-nuclear spectroscopy and imaging artifacts, as well as methods to correct this. METHODS: Pulse-acquire spectra were collected for 1 H and X-nuclei (23 Na or 31 P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X-nucleus were developed and applied, and data were compared with and without these corrections for: slice-selective MRS (for 23 Na and 31 P), 2D spiral trajectories (for 13 C), and 3D cones trajectories (for 23 Na). RESULTS: Line-shape distortions characteristic of eddy currents were demonstrated for X-nuclei, which were not seen for 1 H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non-Cartesian imaging (2D spiral and 3D cones trajectories). CONCLUSION: A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X-nuclear spectroscopy and imaging.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Algoritmos , Encéfalo , Calibración , Fantasmas de Imagen
19.
Sci Rep ; 10(1): 17563, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067515

RESUMEN

Magnetic resonance imaging of the pancreas is increasingly used as an important diagnostic modality for characterisation of pancreatic lesions. Pancreatic MRI protocols are mostly qualitative due to time constraints and motion sensitivity. MR Fingerprinting is an innovative acquisition technique that provides qualitative data and quantitative parameter maps from a single free-breathing acquisition with the potential to reduce exam times. This work investigates the feasibility of MRF parameter mapping for pancreatic imaging in the presence of free-breathing exam. Sixteen healthy participants were prospectively imaged using MRF framework. Regions-of-interest were drawn in multiple solid organs including the pancreas and T1 and T2 values determined. MRF T1 and T2 mapping was performed successfully in all participants (acquisition time:2.4-3.6 min). Mean pancreatic T1 values were 37-43% lower than those of the muscle, spleen, and kidney at both 1.5 and 3.0 T. For these organs, the mean pancreatic T2 values were nearly 40% at 1.5 T and < 12% at 3.0 T. The feasibility of MRF at 1.5 T and 3 T was demonstrated in the pancreas. By enabling fast and free-breathing quantitation, MRF has the potential to add value during the clinical characterisation and grading of pathological conditions, such as pancreatitis or cancer.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Páncreas/diagnóstico por imagen , Respiración , Adulto , Algoritmos , Femenino , Humanos , Masculino , Movimiento (Física) , Reconocimiento de Normas Patrones Automatizadas , Fantasmas de Imagen , Estudios Prospectivos
20.
J Magn Reson ; 318: 106798, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755748

RESUMEN

A quality assurance protocol for RF coils is proposed, which can be used for volume (Tx/Rx) and surface (Rx) coils. Following this protocol, a benchmarking of seven coils (from three different MR sites) dedicated to 13C MRI at 3T is reported. Coil performance is particularly important for 3T MRI at the 13C frequency, since the coil-to-sample noise ratio is typically high. The coils are evaluated experimentally using the proposed protocol based on MR spectroscopic imaging performed with two different phantoms: one head-shaped, and one with cylindrical shape and nearly twice the volume of the first one. To achieve an unbiased SNR comparison of volume and array coils, coil combination was done using sensitivity profiles extracted from the data. SNR, noise correlation matrices and example g-factor maps are reported. For globally calibrated, equal excitation angles, the measured SNR shows large differences for the volume coils of up to 115% at the phantom center for a head phantom. The arrays show lower differences in superficial SNR. The sample surface depth at which the volume coils outperform the arrays is estimated to 7 cm, and SNR furthest away from the coil surface is 28% lower for the best array compared to the best volume coil. A broad set of coils for 13C at 3T have been benchmarked. The results reported, and the method used to benchmark them, should guide the 13C community to choose the most suitable coil for a given experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...