Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Lett ; 20(5): 20240050, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773926

RESUMEN

Larval Lepidoptera gain survival advantages by aggregating, especially when combined with aposematic warning signals, yet reductions in predation risk may not be experienced equally across all group members. Hamilton's selfish herd theory predicts that larvae that surround themselves with their group mates should be at lower risk of predation, and those on the periphery of aggregations experience the greatest risk, yet this has rarely been tested. Here, we expose aggregations of artificial 'caterpillar' targets to predation from free-flying, wild birds to test for marginal predation when all prey are equally accessible and for an interaction between warning coloration and marginal predation. We find that targets nearer the centre of the aggregation survived better than peripheral targets and nearby targets isolated from the group. However, there was no difference in survival between peripheral and isolated targets. We also find that grouped targets survived better than isolated targets when both are aposematic, but not when they are non-signalling. To our knowledge, our data provide the first evidence to suggest that avian predators preferentially target peripheral larvae from aggregations and that prey warning signals enhance predator avoidance of groups.


Asunto(s)
Larva , Conducta Predatoria , Animales , Larva/fisiología
2.
Ecol Evol ; 14(2): e11002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343573

RESUMEN

Insect herbivores, such as lepidopteran larvae, often have close evolutionary relationships with their host plants, with which they may be locked in an evolutionary arms race. Larval grouping behaviour may be one behavioural adaptation that improves host plant feeding, but aggregation also comes with costs, such as higher competition and limited resource access. Here, we use the Heliconiini butterfly tribe to explore the impact of host plant traits on the evolution of larval gregariousness. Heliconiini almost exclusively utilise species from the Passifloraceae as larval host plants. Passifloraceae display incredible diversity in leaf shape and a range of anti-herbivore defences, suggesting they are responding to, and influencing, the evolution of Heliconiini larvae. By analysing larval social behaviour as both a binary (solitary or gregarious) and categorical (increasing larval group size) trait, we revisit the multiple origins of larval gregariousness across Heliconiini. We investigate whether host habitat, leaf defences and leaf size are important drivers of, or constraints on, larval gregariousness. Whereas our data do not reveal links between larval gregariousness and the host plant traits included in this study, we do find an interaction between host plant specialisation and larval behaviour, revealing gregarious larvae to be more likely to feed on a narrower range of host plant species than solitary larvae. We also find evidence that this increased specialisation typically precedes the evolutionary transition to gregarious behaviour. The comparatively greater host specialisation of gregarious larvae suggests that there are specific morphological and/or ecological features of their host plants that favour this behaviour.

3.
Am Nat ; 202(1): 64-77, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37384762

RESUMEN

AbstractMany species gain antipredator benefits by combining gregarious behavior with warning coloration, yet there is debate over which trait evolves first and which is the secondary adaptive enhancement. Body size can also influence how predators receive aposematic signals and potentially constrain the evolution of gregarious behavior. To our knowledge, the causative links between the evolution of gregariousness, aposematism, and larger body sizes have not been fully resolved. Here, using the most recently resolved butterfly phylogeny and an extensive new dataset of larval traits, we reveal the evolutionary interactions between important traits linked to larval gregariousness. We show that larval gregariousness has arisen many times across butterflies, and aposematism is a likely prerequisite for gregariousness to evolve. We also find that body size may be an important factor for determining the coloration of solitary, but not gregarious, larvae. Additionally, by exposing artificial larvae to wild avian predation, we show that undefended, cryptic larvae are heavily predated when aggregated but benefit from solitariness, whereas the reverse is true for aposematic prey. Our data reinforce the importance of aposematism for gregarious larval survival while identifying new questions about the roles of body size and toxicity in the evolution of grouping behavior.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Animales , Larva , Conducta Predatoria , Tamaño Corporal
4.
Proc Biol Sci ; 290(2001): 20230811, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357867

RESUMEN

Prey animals typically try to avoid being detected and/or advertise to would-be predators that they should be avoided. Both anti-predator strategies primarily rely on colour to succeed, but the specific patterning used is also important. While the role of patterning in camouflage is relatively clear, the design features of aposematic patterns are less well understood. Here, we use a comparative approach to investigate how pattern use varies across a phylogeny of 268 species of cryptic and aposematic butterfly larvae, which also vary in social behaviour. We find that longitudinal stripes are used more frequently by cryptic larvae, and that patterns putatively linked to crypsis are more likely to be used by solitary larvae. By contrast, aposematic larvae are more likely to use horizontal bands and spots, but we find no differences in the use of individual pattern elements between solitary and gregarious aposematic species. However, solitary aposematic larvae are more likely to display multiple pattern elements, whereas those with no pattern are more likely to be gregarious. Our study advances our understanding of how pattern variation, coloration and social behaviour covary across lepidopteran larvae, and highlights new questions about how patterning affects larval detectability and predator responses to aposematic prey.


Asunto(s)
Mariposas Diurnas , Animales , Larva/fisiología , Filogenia , Conducta Social , Conducta Predatoria/fisiología
5.
J Evol Biol ; 36(7): 975-991, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37363877

RESUMEN

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.


Asunto(s)
Ecología , Conducta Predatoria , Animales , Fenotipo
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220072, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36802788

RESUMEN

To evolve, and remain adaptive, collective behaviours must have a positive impact on overall individual fitness. However, these adaptive benefits may not be immediately apparent owing to an array of interactions with other ecological traits, which can depend on a lineage's evolutionary past and the mechanisms controlling group behaviour. A coherent understanding of how these behaviours evolve, are exhibited, and are coordinated across individuals, therefore requires an integrative approach spanning traditional disciplines in behavioural biology. Here, we argue that lepidopteran larvae are well placed to serve as study systems for investigating the integrative biology of collective behaviour. Lepidopteran larvae display a striking diversity in social behaviour, which illustrates critical interactions between ecological, morphological and behavioural traits. While previous, often classic, work has provided an understanding of how and why collective behaviours evolve in Lepidoptera, much less is known about the developmental and mechanistic basis of these traits. Recent advances in the quantification of behaviour, and the availability of genomic resources and manipulative tools, allied with the exploitation of the behavioural diversity of tractable lepidopteran clades, will change this. In doing so, we will be able to address previously intractable questions that can reveal the interplay between levels of biological variation. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Asunto(s)
Lepidópteros , Conducta de Masa , Animales , Humanos , Conducta Social , Evolución Biológica
7.
Curr Biol ; 31(23): 5364-5369.e4, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34624210

RESUMEN

The conspicuous warning signal of aposematic animals is learned by their predators, and the resulting avoidance benefits both parties.1-4 Given evidence that birds can distinguish the profitability of prey from the environmental context in which they appear,5 aposematic insects' host plants might also provide an important cue to foraging predators.6 The aposematic cinnabar moth (Tyria jacobaeae) larva is a specialist on its ragwort (Senecio spp.) host plant,7 presenting a consistent environment with which it could be reliably associated. Additionally, ragwort's defensive toxins prevent non-specialist, profitable insects from feeding on it.8 Thus, avian predators may recognize cues from ragwort, most likely its conspicuous yellow flowers,9,10 and use this information to avoid cinnabars. To test this hypothesis, we exposed artificial cinnabar and non-signaling "caterpillar" targets to wild avian predation by presenting them on ragwort and non-toxic host plants. We also manipulated the presence or absence of ragwort flowers on hosts. In doing so, we show that both targets are better protected on the cinnabar's natural ragwort host and that birds use ragwort's distinctive yellow flowers as the cue to avoidance. Additionally, we found that naive predators do not make prey host foraging distinctions, indicating that this avoidance behavior is learned through experience. Our findings are among the first to suggest that a host plant's features act as an extended phenotype that signals the toxicity of the prey that live on it. This prey-host relationship may facilitate the initial evolution of toxicity in non-signaling prey, but also inhibit the evolution of aposematic signals themselves. VIDEO ABSTRACT.


Asunto(s)
Aves , Conducta Predatoria , Animales , Reacción de Prevención , Insectos , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...