Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Vet Med Assoc ; 262(5): 665-673, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324993

RESUMEN

OBJECTIVE: To validate the performance of a novel, integrated test for canine cancer screening that combines cell-free DNA quantification with next-generation sequencing (NGS) analysis. SAMPLE: Retrospective data from a total of 1,947 cancer-diagnosed and presumably cancer-free dogs were used to validate test performance for the detection of 7 predefined cancer types (lymphoma, hemangiosarcoma, osteosarcoma, leukemia, histiocytic sarcoma, primary lung tumors, and urothelial carcinoma), using independent training and testing sets. METHODS: Cell-free DNA quantification data from all samples were analyzed using a proprietary machine learning algorithm to determine a Cancer Probability Index (High, Moderate, or Low). High and Low Probability of Cancer were final result classifications. Moderate cases were additionally analyzed by NGS to arrive at a final classification of High Probability of Cancer (Cancer Signal Detected) or Low Probability of Cancer (Cancer Signal Not Detected). RESULTS: Of the 595 dogs in the testing set, 89% (n = 530) received a High or Low Probability result based on the machine learning algorithm; 11% (65) were Moderate Probability, and NGS results were used to assign a final classification. Overall, 87 of 122 dogs with the 7 predefined cancer types were classified as High Probability and 467 of 473 presumably cancer-free dogs were classified as Low Probability, corresponding to a sensitivity of 71.3% for the predefined cancer types at a specificity of 98.7%. CLINICAL RELEVANCE: This integrated test offers a novel option to screen for cancer types that may be difficult to detect by physical examination at a dog's wellness visit.

2.
Am J Vet Res ; : 1-8, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38150822

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the performance of a next-generation sequencing-based liquid biopsy test for cancer monitoring in dogs. SAMPLES: Pre- and postoperative blood samples were collected from dogs with confirmed cancer diagnoses originally enrolled in the CANcer Detection in Dogs (CANDiD) study. A subset of dogs also had longitudinal blood samples collected for recurrence monitoring. METHODS: All cancer-diagnosed patients had a preoperative blood sample in which a cancer signal was detected and had at least 1 postoperative sample collected. Clinical data were used to assign a clinical disease status for each follow-up visit. RESULTS: Following excisional surgery, in the absence of clinical residual disease at the postoperative visit, patients with Cancer Signal Detected results at that visit were 1.94 times as likely (95% CI, 1.21 to 3.12; P = .013) to have clinical recurrence within 6 months compared to patients with Cancer Signal Not Detected results. In the subset of patients with longitudinal liquid biopsy samples that had clinical recurrence documented during the study period, 82% (9/11; 95% CI, 48% to 97%) had Cancer Signal Detected in blood prior to or concomitant with clinical recurrence; in the 6 patients where molecular recurrence was detected prior to clinical recurrence, the median lead time was 168 days (range, 47 to 238). CLINICAL RELEVANCE: Next-generation sequencing-based liquid biopsy is a noninvasive tool that may offer utility as an adjunct to current standard-of-care clinical assessment for cancer monitoring; further studies are needed to confirm diagnostic accuracy in a larger population.

3.
Vet Sci ; 10(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37505860

RESUMEN

Age-related somatic genomic alterations in hematopoietic cell lines have been well characterized in humans; however, this phenomenon has not been well studied in other species. Next-generation sequencing-based liquid biopsy testing for cancer detection was recently developed for dogs and has been used to study the genomic profiles of blood samples from thousands of canine patients since 2021. In this study, 4870 client-owned dogs with and without a diagnosis or suspicion of cancer underwent liquid biopsy testing by this method. Copy number variants detected exclusively in genomic DNA derived from white blood cells (WBC gDNA-specific CNVs) were observed in 126 dogs (2.6%; 95% CI: 2.2-3.1); these copy number variants were absent from matched plasma cell-free DNA, and from tumor tissue in dogs with concurrent cancer. These findings were more common in older dogs and were persistent in WBC gDNA in over 70% of patients, with little to no change in the amplitude of the signal across longitudinal samples. Many of these alterations were observed at recurrent locations in the genome across subjects; the most common finding was a partial loss on CFA25, typically accompanied by a partial gain on the same chromosome. These early findings suggest that age-related somatic alterations may be present at an appreciable frequency in the general canine population. Further research is needed to determine the clinical significance of these findings.

4.
PLoS One ; 18(2): e0280795, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724177

RESUMEN

The goal of cancer screening is to detect disease at an early stage when treatment may be more effective. Cancer screening in dogs has relied upon annual physical examinations and routine laboratory tests, which are largely inadequate for detecting preclinical disease. With the introduction of non-invasive liquid biopsy cancer detection methods, the discussion is shifting from how to screen dogs for cancer to when to screen dogs for cancer. To address this question, we analyzed data from 3,452 cancer-diagnosed dogs to determine the age at which dogs of certain breeds and weights are typically diagnosed with cancer. In our study population, the median age at cancer diagnosis was 8.8 years, with males diagnosed at younger ages than females, and neutered dogs diagnosed at significantly later ages than intact dogs. Overall, weight was inversely correlated with age at cancer diagnosis, and purebred dogs were diagnosed at significantly younger ages than mixed-breed dogs. For breeds represented by ≥10 dogs, a breed-based median age at diagnosis was calculated. A weight-based linear regression model was developed to predict the median age at diagnosis for breeds represented by ≤10 dogs and for mixed-breed dogs. Our findings, combined with findings from previous studies which established a long duration of the preclinical phase of cancer development in dogs, suggest that it might be reasonable to consider annual cancer screening starting 2 years prior to the median age at cancer diagnosis for dogs of similar breed or weight. This logic would support a general recommendation to start cancer screening for all dogs at the age of 7, and as early as age 4 for breeds with a lower median age at cancer diagnosis, in order to increase the likelihood of early detection and treatment.


Asunto(s)
Enfermedades de los Perros , Neoplasias , Humanos , Femenino , Masculino , Perros , Animales , Detección Precoz del Cáncer , Neoplasias/diagnóstico , Neoplasias/veterinaria , Registros , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología
5.
J Vet Intern Med ; 37(1): 258-267, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36661398

RESUMEN

BACKGROUND: Guidelines-driven screening protocols for early cancer detection in dogs are lacking, and cancer often is detected at advanced stages. HYPOTHESIS/OBJECTIVES: To examine how cancer typically is detected in dogs and whether the addition of a next-generation sequencing-based "liquid biopsy" test to a wellness visit has the potential to enhance cancer detection. ANIMALS: Client-owned dogs with definitive cancer diagnoses enrolled in a clinical validation study for a novel blood-based multicancer early detection test. METHODS: Retrospective medical record review was performed to establish the history and presenting complaint that ultimately led to a definitive cancer diagnosis. Blood samples were subjected to DNA extraction, library preparation, and next-generation sequencing. Sequencing data were analyzed using an internally developed bioinformatics pipeline to detect genomic alterations associated with the presence of cancer. RESULTS: In an unselected cohort of 359 cancer-diagnosed dogs, 4% of cases were detected during a wellness visit, 8% were detected incidentally, and 88% were detected after the owner reported clinical signs suggestive of cancer. Liquid biopsy detected disease in 54.7% (95% confidence interval [CI], 49.5%-59.8%) of patients, including 32% of dogs with early-stage cancer, 48% of preclinical dogs, and 84% of dogs with advanced-stage disease. CONCLUSIONS/CLINICAL IMPORTANCE: Most cases of cancer were diagnosed after the onset of clinical signs; only 4% of dogs had cancer detected using the current standard of care (i.e., wellness visit). Liquid biopsy has the potential to increase detection of cancer when added to a dog's wellness visit.


Asunto(s)
Enfermedades de los Perros , Neoplasias , Perros , Animales , Estudios Retrospectivos , Biopsia Líquida/veterinaria , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/veterinaria , Enfermedades de los Perros/diagnóstico
6.
PLoS One ; 17(4): e0266623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35471999

RESUMEN

Cancer is the leading cause of death in dogs, yet there are no established screening paradigms for early detection. Liquid biopsy methods that interrogate cancer-derived genomic alterations in cell-free DNA in blood are being adopted for multi-cancer early detection in human medicine and are now available for veterinary use. The CANcer Detection in Dogs (CANDiD) study is an international, multi-center clinical study designed to validate the performance of a novel multi-cancer early detection "liquid biopsy" test developed for noninvasive detection and characterization of cancer in dogs using next-generation sequencing (NGS) of blood-derived DNA; study results are reported here. In total, 1,358 cancer-diagnosed and presumably cancer-free dogs were enrolled in the study, representing the range of breeds, weights, ages, and cancer types seen in routine clinical practice; 1,100 subjects met inclusion criteria for analysis and were used in the validation of the test. Overall, the liquid biopsy test demonstrated a 54.7% (95% CI: 49.3-60.0%) sensitivity and a 98.5% (95% CI: 97.0-99.3%) specificity. For three of the most aggressive canine cancers (lymphoma, hemangiosarcoma, osteosarcoma), the detection rate was 85.4% (95% CI: 78.4-90.9%); and for eight of the most common canine cancers (lymphoma, hemangiosarcoma, osteosarcoma, soft tissue sarcoma, mast cell tumor, mammary gland carcinoma, anal sac adenocarcinoma, malignant melanoma), the detection rate was 61.9% (95% CI: 55.3-68.1%). The test detected cancer signal in patients representing 30 distinct cancer types and provided a Cancer Signal Origin prediction for a subset of patients with hematological malignancies. Furthermore, the test accurately detected cancer signal in four presumably cancer-free subjects before the onset of clinical signs, further supporting the utility of liquid biopsy as an early detection test. Taken together, these findings demonstrate that NGS-based liquid biopsy can offer a novel option for noninvasive multi-cancer detection in dogs.


Asunto(s)
Hemangiosarcoma , Osteosarcoma , Animales , Biomarcadores de Tumor/genética , Perros , Detección Precoz del Cáncer , Pruebas Hematológicas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biopsia Líquida
7.
Front Vet Sci ; 8: 704835, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307538

RESUMEN

This proof-of-concept study demonstrates that blood-based liquid biopsy using next generation sequencing of cell-free DNA can non-invasively detect multiple classes of genomic alterations in dogs with cancer, including alterations that originate from spatially separated tumor sites. Eleven dogs with a variety of confirmed cancer diagnoses (including localized and disseminated disease) who were scheduled for surgical resection, and five presumably cancer-free dogs, were enrolled. Blood was collected from each subject, and multiple spatially separated tumor tissue samples were collected during surgery from 9 of the cancer subjects. All samples were analyzed using an advanced prototype of a novel liquid biopsy test designed to non-invasively interrogate multiple classes of genomic alterations for the detection, characterization, and management of cancer in dogs. In five of the nine cancer patients with matched tumor and plasma samples, pre-surgical liquid biopsy testing identified genomic alterations, including single nucleotide variants and copy number variants, that matched alterations independently detected in corresponding tumor tissue samples. Importantly, the pre-surgical liquid biopsy test detected alterations observed in spatially separated tissue samples from the same subject, demonstrating the potential of blood-based testing for comprehensive genomic profiling of heterogeneous tumors. Among the three patients with post-surgical blood samples, genomic alterations remained detectable in one patient with incomplete tumor resection, suggesting utility for non-invasive detection of minimal residual disease following curative-intent treatment. Liquid biopsy allows for non-invasive profiling of cancer-associated genomic alterations with a simple blood draw and has potential to overcome the limitations of tissue-based testing posed by tissue-level genomic heterogeneity.

8.
Am J Respir Crit Care Med ; 176(4): 327-32, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17575093

RESUMEN

RATIONALE: Coughing in humans is typically preceded by a desire (or urge) to cough. The neural circuitry involved in sensing airway irritation and generating the urge-to-cough in humans is essentially unknown. OBJECTIVES: The aim of the present study was to use functional brain imaging to describe the supramedullary regions that are activated in humans during capsaicin inhalation. METHODS: Experiments were performed on 10 healthy subjects (5 males, 5 females). Capsaicin doses were individually tailored to evoke a transient and reversible urge-to-cough. Blood oxygen level-dependent (BOLD) functional magnetic resonance measures were collected during repeated 24-second challenges with capsaicin or saline inhalation and subjects were asked to rate the urge-to-cough intensity of each challenge. MEASUREMENTS AND MAIN RESULTS: Capsaicin inhalation reliably evoked an urge-to-cough, which was associated with activations in a variety of brain regions, including the insula cortex, anterior midcingulate cortex, primary sensory cortex, orbitofrontal cortex, supplementary motor area, and cerebellum. CONCLUSIONS: These data provide the first insights into the cortical neuronal network involved in sensing airway irritation and modulating coughing in humans.


Asunto(s)
Encéfalo/fisiología , Capsaicina/administración & dosificación , Tos/inducido químicamente , Irritantes/administración & dosificación , Imagen por Resonancia Magnética , Administración por Inhalación , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Provocación Nasal , Reflejo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...