Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 109975, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38827398

RESUMEN

Severe COVID-19 often leads to secondary infections and sepsis that contribute to long hospital stays and mortality. However, our understanding of the precise immune mechanisms driving severe complications after SARS-CoV-2 infection remains incompletely understood. Here, we provide evidence that the SARS-CoV-2 envelope (E) protein initiates innate immune inflammation, via toll-like receptor 2 signaling, and establishes a sustained state of innate immune tolerance following initial activation. Monocytes in this tolerant state exhibit reduced responsiveness to secondary stimuli, releasing lower levels of cytokines and chemokines. Mice exposed to E protein before secondary lipopolysaccharide challenge show diminished pro-inflammatory cytokine expression in the lung, indicating that E protein drives this tolerant state in vivo. These findings highlight the potential of the SARS-CoV-2 E protein to induce innate immune tolerance, contributing to long-term immune dysfunction that could lead to susceptibility to subsequent infections, and uncovers therapeutic targets aimed at restoring immune function following SARS-CoV-2 infection.

2.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38562793

RESUMEN

Recent studies have revealed the pervasive landscape of rare structural variants (rSVs) present in human genomes. rSVs can have extreme effects on the expression of proximal genes and, in a rare disease context, have been implicated in patient cases where no diagnostic single nucleotide variant (SNV) was found. Approaches for integrating rSVs to date have focused on targeted approaches in known Mendelian rare disease genes. This approach is intractable for rare diseases with many causal loci or patients with complex, multi-phenotype syndromes. We hypothesized that integrating trait-relevant polygenic scores (PGS) would provide a substantial reduction in the number of candidate disease genes in which to assess rSV effects. We further implemented a method for ranking PGS genes to define a set of core/key genes where a rSV has the potential to exert relatively larger effects on disease risk. Among a subset of patients enrolled in the Genomic Answers for Kids (GA4K) rare disease program (N=497), we used PacBio HiFi long-read whole genome sequencing (lrWGS) to identify rSVs intersecting genes in trait-relevant PGSs. Illustrating our approach in Autism (N=54 cases), we identified 22, 019 deletions, 2,041 duplications, 87,826 insertions, and 214 inversions overlapping putative core/key PGS genes. Additionally, by integrating genomic constraint annotations from gnomAD, we observed that rare duplications overlapping putative core/key PGS genes were frequently in higher constraint regions compared to controls (P = 1×10-03). This difference was not observed in the lowest-ranked gene set (P = 0.15). Overall, our study provides a framework for the annotation of long-read rSVs from lrWGS data and prioritization of disease-linked genomic regions for downstream functional validation of rSV impacts. To enable reuse by other researchers, we have made SV allele frequencies and gene associations freely available.

3.
Commun Med (Lond) ; 4(1): 47, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491326

RESUMEN

BACKGROUND: Increased inflammation caused by SARS-CoV-2 infection can lead to severe coronavirus disease 2019 (COVID-19) and long-term disease manifestations. The mechanisms of this variable long-term immune activation are poorly defined. One feature of this increased inflammation is elevated levels of proinflammatory cytokines and chemokines. Autoantibodies targeting immune factors such as cytokines, as well as the viral host cell receptor, angiotensin-converting enzyme 2 (ACE2), have been observed after SARS-CoV-2 infection. Autoantibodies to immune factors and ACE2 could interfere with normal immune regulation and lead to increased inflammation, severe COVID-19, and long-term complications. METHODS: Here, we deeply profiled the features of ACE2, cytokine, and chemokine autoantibodies in samples from patients recovering from severe COVID-19. We measured the levels of immunoglobulin subclasses (IgG, IgA, IgM) in the peripheral blood against ACE2 and 23 cytokines and other immune molecules. We then utilized an ACE2 peptide microarray to map the linear epitopes targeted by ACE2 autoantibodies. RESULTS: We demonstrate that ACE2 autoantibody levels are increased in individuals with severe COVID-19 compared with those with mild infection or no prior infection. We identify epitopes near the catalytic domain of ACE2 targeted by these antibodies. Levels of autoantibodies targeting ACE2 and other immune factors could serve as determinants of COVID-19 disease severity, and represent a natural immunoregulatory mechanism in response to viral infection. CONCLUSIONS: These results demonstrate that SARS-CoV-2 infection can increase autoantibody levels to ACE2 and other immune factors. The levels of these autoantibodies are associated with COVID-19 disease severity.


Antibodies are small proteins that are produced by your immune system to protect you when an unwanted foreign invader such as bacteria, viruses and toxins enters your body. When these antibodies target proteins on our own cells instead of the invader, we call them autoantibodies. Autoantibodies that target host immune molecules, as well as ACE2, a receptor molecule that interacts with the SARS-CoV-2 virus, have been observed after COVID-19. We found that patients who had severe COVID-19 displayed higher levels of these autoantibodies compared to those who had mild infection or were uninfected. These findings suggest that these autoantibody levels could serve as indicators of COVID-19 severity.

4.
Res Sq ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37841848

RESUMEN

Increased inflammation caused by SARS-CoV-2 infection can lead to severe coronavirus disease 2019 (COVID-19) and long-term disease manifestations referred to as post-acute sequalae of COVID (PASC). The mechanisms of this variable long-term immune activation are poorly defined. Autoantibodies targeting immune factors such as cytokines, as well as the viral host cell receptor, angiotensin-converting enzyme 2 (ACE2), have been observed after SARS-CoV-2 infection. Autoantibodies to immune factors and ACE2 could interfere with normal immune regulation and lead to increased inflammation, severe COVID-19, and long-term complications. Here, we deeply pro led the features of ACE2, cytokine, and chemokine autoantibodies in samples from patients recovering from severe COVID-19. We identified epitopes in the catalytic domain of ACE2 targeted by these antibodies, that could inhibit ACE2 function. Levels of autoantibodies targeting ACE2 and other immune factors could serve as determinants of COVID-19 disease severity, and represent a natural immunoregulatory mechanism in response to viral infection.

5.
Commun Biol ; 6(1): 539, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202439

RESUMEN

Human milk is essential for infant nutrition and immunity, providing protection against infections and other immune-mediated diseases during the lactation period and beyond in later childhood. Milk contains a broad range of bioactive factors such as nutrients, hormones, enzymes, immunoglobulins, growth factors, cytokines, and antimicrobial factors, as well as heterogeneous populations of maternal cells. The soluble and cellular components of milk are dynamic over time to meet the needs of the growing infant. In this study, we utilize systems-approaches to define and characterize 62 analytes of the soluble component, including immunoglobulin isotypes, as well as the cellular component of human milk during the first two weeks postpartum from 36 mothers. We identify soluble immune and growth factors that are dynamic over time and could be utilized to classify milk into different phenotypic groups. We identify 24 distinct populations of both epithelial and immune cells by single-cell transcriptome analysis of 128,016 human milk cells. We found that macrophage populations have shifting inflammatory profiles during the first two weeks of lactation. This analysis provides key insights into the soluble and cellular components of human milk and serves as a substantial resource for future studies of human milk.


Asunto(s)
Lactancia , Leche Humana , Lactante , Femenino , Humanos , Niño , Leche Humana/química , Leche Humana/metabolismo , Inmunoglobulinas/metabolismo , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
6.
Elife ; 122023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37073859

RESUMEN

Collective cell migration plays an essential role in vertebrate development, yet the extent to which dynamically changing microenvironments influence this phenomenon remains unclear. Observations of the distribution of the extracellular matrix (ECM) component fibronectin during the migration of loosely connected neural crest cells (NCCs) lead us to hypothesize that NCC remodeling of an initially punctate ECM creates a scaffold for trailing cells, enabling them to form robust and coherent stream patterns. We evaluate this idea in a theoretical setting by developing an individual-based computational model that incorporates reciprocal interactions between NCCs and their ECM. ECM remodeling, haptotaxis, contact guidance, and cell-cell repulsion are sufficient for cells to establish streams in silico, however, additional mechanisms, such as chemotaxis, are required to consistently guide cells along the correct target corridor. Further model investigations imply that contact guidance and differential cell-cell repulsion between leader and follower cells are key contributors to robust collective cell migration by preventing stream breakage. Global sensitivity analysis and simulated gain- and loss-of-function experiments suggest that long-distance migration without jamming is most likely to occur when leading cells specialize in creating ECM fibers, and trailing cells specialize in responding to environmental cues by upregulating mechanisms such as contact guidance.


Asunto(s)
Fibronectinas , Cresta Neural , Movimiento Celular , Comunicación Celular
7.
Dev Dyn ; 252(8): 1130-1142, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840366

RESUMEN

BACKGROUND: The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS: To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS: Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.


Asunto(s)
Sistema Nervioso Simpático , Transcriptoma , Animales , ARN Mensajero , Hibridación Fluorescente in Situ , Ganglios Simpáticos , Pollos
8.
Dev Dyn ; 252(5): 629-646, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36692868

RESUMEN

BACKGROUND: Collective and discrete neural crest cell (NCC) migratory streams are crucial to vertebrate head patterning. However, the factors that confine NCC trajectories and promote collective cell migration remain unclear. RESULTS: Computational simulations predicted that confinement is required only along the initial one-third of the cranial NCC migratory pathway. This guided our study of Colec12 (Collectin-12, a transmembrane scavenger receptor C-type lectin) and Trail (tumor necrosis factor-related apoptosis-inducing ligand, CD253) which we show expressed in chick cranial NCC-free zones. NCC trajectories are confined by Colec12 or Trail protein stripes in vitro and show significant and distinct changes in cell morphology and dynamic migratory characteristics when cocultured with either protein. Gain- or loss-of-function of either factor or in combination enhanced NCC confinement or diverted cell trajectories as observed in vivo with three-dimensional confocal microscopy, respectively, resulting in disrupted collective migration. CONCLUSIONS: These data provide evidence for Colec12 and Trail as novel NCC microenvironmental factors playing a role to confine cranial NCC trajectories and promote collective cell migration.


Asunto(s)
Movimiento Celular , Pollos , Cresta Neural , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Pollos/genética , Pollos/fisiología , Simulación por Computador , Cresta Neural/citología , Cresta Neural/fisiología , Cráneo
9.
Front Med (Lausanne) ; 9: 1034594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353222

RESUMEN

Diffuse large B-cell lymphoma (DLBCL), the most common form of lymphoma, is typically treated with chemotherapy combined with the immunotherapy rituximab, an antibody targeting the B cell receptor, CD20. Despite the success of this treatment regimen, approximately a third of DLBCL patients experience either relapse or have refractory disease that is resistant to rituximab, indicating the need for alternative therapeutic strategies. Here, we identified that CD74 and IL4R are expressed on the cell surface of both CD20 positive and CD20 negative B cell populations. Moreover, genes encoding CD74 and IL4R are expressed in lymphoma biopsies isolated from all stages of disease. We engineered bispecific antibodies targeting CD74 or IL4R in combination with rituximab anti-CD20 (anti-CD74/anti-CD20 and anti-IL4R/anti-CD20). Bispecific antibody function was evaluated by measuring direct induction of apoptosis, antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent cellular cytotoxicity in both rituximab-sensitive and rituximab-resistant DLBCL cell lines. Both anti-CD74/anti-CD20 and anti-IL4R/anti-CD20 were able to mediate ADCC and ADCP, but CD74-targeting therapeutic antibodies could also mediate direct cytotoxicity. Overall, this study strongly indicates that development of bispecific antibodies that target multiple B cell receptors expressed by lymphoma could provide improved defense against relapse and rituximab resistance.

10.
Vaccines (Basel) ; 10(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146555

RESUMEN

Understanding the B cell response to SARS-CoV-2 vaccines is a high priority. High-throughput sequencing of the B cell receptor (BCR) repertoire allows for dynamic characterization of B cell response. Here, we sequenced the BCR repertoire of individuals vaccinated by the Pfizer SARS-CoV-2 mRNA vaccine. We compared BCR repertoires of individuals with previous COVID-19 infection (seropositive) to individuals without previous infection (seronegative). We discovered that vaccine-induced expanded IgG clonotypes had shorter heavy-chain complementarity determining region 3 (HCDR3), and for seropositive individuals, these expanded clonotypes had higher somatic hypermutation (SHM) than seronegative individuals. We uncovered shared clonotypes present in multiple individuals, including 28 clonotypes present across all individuals. These 28 shared clonotypes had higher SHM and shorter HCDR3 lengths compared to the rest of the BCR repertoire. Shared clonotypes were present across both serotypes, indicating convergent evolution due to SARS-CoV-2 vaccination independent of prior viral exposure.

11.
Sci Rep ; 12(1): 6496, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444221

RESUMEN

SARS-CoV-2 is a novel betacoronavirus that caused coronavirus disease 2019 and has resulted in millions of deaths worldwide. Novel coronavirus infections in humans have steadily become more common. Understanding antibody responses to SARS-CoV-2, and identifying conserved, cross-reactive epitopes among coronavirus strains could inform the design of vaccines and therapeutics with broad application. Here, we determined that individuals with previous SARS-CoV-2 infection or vaccinated with the Pfizer-BioNTech BNT162b2 vaccine produced antibody responses that cross-reacted with related betacoronaviruses. Moreover, we designed a peptide-conjugate vaccine with a conserved SARS-CoV-2 S2 spike epitope, immunized mice and determined cross-reactive antibody binding to SARS-CoV-2 and other related coronaviruses. This conserved spike epitope also shared sequence homology to proteins in commensal gut microbiota and could prime immune responses in humans. Thus, SARS-CoV-2 conserved epitopes elicit cross-reactive immune responses to both related coronaviruses and host bacteria that could serve as future targets for broad coronavirus therapeutics and vaccines.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Epítopos , Humanos , Ratones , SARS-CoV-2 , Vacunación
12.
Clin Transl Sci ; 15(5): 1091-1103, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34866338

RESUMEN

The roles that natural killer (NK) cells play in liver disease and transplantation remain ill-defined. Reports on the matter are often contradictory, and the mechanisms elucidated are complex and dependent on the context of the model tested. Moreover, NK cell attributes, such as receptor protein expression and function differ among species, make study of primate or rodent transplant models challenging. Recent insights into NK function and NK-mediated therapy in the context of cancer therapy may prove applicable to transplantation. Of specific interest are immune checkpoint molecules and the mechanisms by which they modulate NK cells in the tumor micro-environment. In this review, we summarize NK cell populations in the peripheral blood and liver, and we explore the data regarding the expression and function of immune checkpoint molecules on NK cells. We also hypothesize about the roles they could play in liver transplantation and discuss how they might be harnessed therapeutically in transplant sciences.


Asunto(s)
Trasplante de Hígado , Neoplasias , Animales , Humanos , Proteínas de Punto de Control Inmunitario , Tolerancia Inmunológica , Células Asesinas Naturales , Trasplante de Hígado/efectos adversos , Microambiente Tumoral
13.
Bull Math Biol ; 83(4): 26, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33594536

RESUMEN

Cell invasion and cell plasticity are critical to human development but are also striking features of cancer metastasis. By distributing a multipotent cell type from a place of birth to distal locations, the vertebrate embryo builds organs. In comparison, metastatic tumor cells often acquire a de-differentiated phenotype and migrate away from a primary site to inhabit new microenvironments, disrupting normal organ function. Countless observations of both embryonic cell migration and tumor metastasis have demonstrated complex cell signaling and interactive behaviors that have long confounded scientist and clinician alike. James D. Murray realized the important role of mathematics in biology and developed a unique strategy to address complex biological questions such as these. His work offers a practical template for constructing clear, logical, direct and verifiable models that help to explain complex cell behaviors and direct new experiments. His pioneering work at the interface of development and cancer made significant contributions to glioblastoma cancer and embryonic pattern formation using often simple models with tremendous predictive potential. Here, we provide a brief overview of advances in cell invasion and cell plasticity using the embryonic neural crest and its ancestral relationship to aggressive cancers that put into current context the timeless aspects of his work.


Asunto(s)
Modelos Biológicos , Invasividad Neoplásica , Neoplasias , Humanos , Neoplasias/fisiopatología , Cresta Neural/citología
14.
Development ; 148(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35020873

RESUMEN

The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.


Asunto(s)
Región Branquial/crecimiento & desarrollo , Cabeza/crecimiento & desarrollo , Cuello/crecimiento & desarrollo , Cresta Neural/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Región Branquial/embriología , Diferenciación Celular/genética , Movimiento Celular/genética , Microambiente Celular/genética , Embrión de Pollo , Embrión de Mamíferos , Embrión no Mamífero , Desarrollo Embrionario/genética , Cabeza/embriología , Humanos , Mesodermo/crecimiento & desarrollo , Células Madre Multipotentes/citología , Cuello/embriología , Cresta Neural/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Organogénesis/genética , Microambiente Tumoral/genética , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
15.
Dev Biol ; 461(2): 184-196, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32084354

RESUMEN

Vertebrate head morphogenesis involves carefully-orchestrated tissue growth and cell movements of the mesoderm and neural crest to form the distinct craniofacial pattern. To better understand structural birth defects, it is important that we characterize the dynamics of these processes and learn how they rely on each other. Here we examine this question during chick head morphogenesis using time-lapse imaging, computational modeling, and experiments. We find that head mesodermal cells in culture move in random directions as individuals and move faster in the presence of neural crest cells. In vivo, mesodermal cells migrate in a directed manner and maintain neighbor relationships; neural crest cells travel through the mesoderm at a faster speed. The mesoderm grows with a non-uniform spatio-temporal profile determined by BrdU labeling during the period of faster and more-directed neural crest collective migration through this domain. We use computer simulations to probe the robustness of neural crest stream formation by varying the spatio-temporal growth profile of the mesoderm. We follow this with experimental manipulations that either stop mesoderm growth or prevent neural crest migration and observe changes in the non-manipulated cell population, implying a dynamic feedback between tissue growth and neural crest cell signaling to confer robustness to the system. Overall, we present a novel descriptive analysis of mesoderm and neural crest cell dynamics that reveals the coordination and co-dependence of these two cell populations during head morphogenesis.


Asunto(s)
Embrión de Pollo/citología , Cabeza/embriología , Mesodermo/citología , Cresta Neural/citología , Tubo Neural/citología , Animales , División Celular , Movimiento Celular , Células Cultivadas , Pollos , Simulación por Computador , Coturnix/embriología , Ectodermo/citología , Modelos Biológicos , Morfogénesis , Imagen de Lapso de Tiempo
16.
Dev Dyn ; 249(3): 270-280, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31622517

RESUMEN

The neural crest serves as a powerful and tractable model paradigm for understanding collective cell migration. The neural crest cell populations are well-known for their long-distance collective migration and contribution to diverse cell lineages during vertebrate development. If neural crest cells fail to reach a target or populate an incorrect location, then improper cell differentiation or uncontrolled cell proliferation can result. A wide range of interdisciplinary studies has been carried out to understand the response of neural crest cells to different stimuli and their ability to migrate to distant targets. In this critical commentary, we illustrate how an interdisciplinary collaboration involving experimental and mathematical modeling has led to a deeper understanding of cranial neural crest cell migration. We identify open questions and propose possible ways to start answering some of the challenges arising.


Asunto(s)
Movimiento Celular/fisiología , Cresta Neural/citología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Humanos , Estudios Interdisciplinarios , Modelos Teóricos , Cresta Neural/metabolismo , Transducción de Señal/fisiología
17.
Development ; 147(1)2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31826865

RESUMEN

Neural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin 1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed and direction, as well as the length and stability of cell filopodia. Furthermore, AQP-1 enhances matrix metalloprotease activity and colocalizes with phosphorylated focal adhesion kinases. Colocalization of AQP-1 with EphB guidance receptors in the same migrating neural crest cells has novel implications for the concept of guided bulldozing by lead cells during migration.


Asunto(s)
Acuaporina 1/fisiología , Movimiento Celular/fisiología , Cresta Neural/citología , Seudópodos/fisiología , Animales , Región Branquial/citología , Región Branquial/embriología , Membrana Celular/fisiología , Microambiente Celular , Embrión de Pollo , Biología Computacional , Adhesiones Focales , Cresta Neural/embriología , Receptor EphB1/metabolismo , Receptor EphB3/metabolismo
18.
Methods Mol Biol ; 1920: C1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31290130

RESUMEN

The author added a sentence to this chapter. The text has been added to the chapter opening page.

19.
Methods Mol Biol ; 1976: 71-82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30977066

RESUMEN

In ovo electroporation enables transfection of non-viral plasmid DNA and/or morpholinos to fluorescently label and/or perturb gene function in cells of interest. However, targeted electroporation into specific subregions of the embryo can be challenging due to placement and size limitations of the electrodes. Here we describe the basic techniques for in ovo electroporation in the chick embryo and suggest parameters to electroporate cells within different target tissues that with some modifications may be applicable to a wide range of developmental stages and other embryo model organisms.


Asunto(s)
Electroporación/métodos , Morfolinos/metabolismo , Plásmidos/genética , Animales , Embrión de Pollo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica
20.
Methods Mol Biol ; 1920: 247-263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30737695

RESUMEN

Reptiles have great taxonomic diversity that is reflected in their morphology, ecology, physiology, modes of reproduction, and development. Interest in comparative and evolutionary developmental biology makes protocols for the study of reptile embryos invaluable resources. The relatively large size, seasonal breeding, and long gestation times of turtles epitomize the challenges faced by the developmental biologist. We describe protocols for the preparation of turtle embryos for ex ovo culture, electroporation, in situ hybridization, and microcomputed tomography. Because these protocols have been adapted and optimized from methods used for frog, chick, and mouse embryos, it is likely that they could be used for other reptilian species. Notes are included for alligator embryos where appropriate.


Asunto(s)
Caimanes y Cocodrilos/embriología , Desarrollo Embrionario , Tortugas/embriología , Caimanes y Cocodrilos/genética , Animales , Biomarcadores , Electroporación , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Tortugas/genética , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...