Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 15243, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28516905

RESUMEN

The chemistry of the Earth's atmosphere close to the surface is known to be strongly influenced by vegetation. However, two critical aspects of the forest environment have been neglected in the description of the large-scale influence of forests on air pollution: the reduction of photolysis reaction rates and the modification of vertical transport due to the presence of foliage. Here we show that foliage shading and foliage-modified vertical diffusion have a profound influence on atmospheric chemistry, both at the Earth's surface and extending throughout the atmospheric boundary layer. The absence of these processes in three-dimensional models may account for 59-72% of the positive bias in North American surface ozone forecasts, and up to 97% of the bias in forested regions within the continent. These processes are shown to have similar or greater influence on surface ozone levels as climate change and current emissions policy scenario simulations.

2.
Sci Rep ; 7: 44095, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28275238

RESUMEN

The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

3.
J Quant Spectrosc Radiat Transf ; 186: 17-39, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32817995

RESUMEN

TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

4.
Sci Rep ; 6: 25661, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27210416

RESUMEN

Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of 'clean Atlantic background' air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50 ppb per year) in the 1997-2003 period but continues post 2003. A 'local CO increment' can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and 'bottom-up' inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...