Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 9(7): 1116-1129, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291396

RESUMEN

Plants employ a divergent cohort of phytochrome (Phy) photoreceptors to govern many aspects of morphogenesis through reversible photointerconversion between inactive Pr and active Pfr conformers. The two most influential are PhyA whose retention of Pfr enables sensation of dim light, while the relative instability of Pfr for PhyB makes it better suited for detecting full sun and temperature. To better understand these contrasts, we solved, by cryo-electron microscopy, the three-dimensional structure of full-length PhyA as Pr. Like PhyB, PhyA dimerizes through head-to-head assembly of its C-terminal histidine kinase-related domains (HKRDs), while the remainder assembles as a head-to-tail light-responsive platform. Whereas the platform and HKRDs associate asymmetrically in PhyB dimers, these lopsided connections are absent in PhyA. Analysis of truncation and site-directed mutants revealed that this decoupling and altered platform assembly have functional consequences for Pfr stability of PhyA and highlights how plant Phy structural diversification has extended light and temperature perception.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Microscopía por Crioelectrón , Luz , Fotorreceptores de Plantas , Fitocromo A/genética , Fitocromo B/genética , Plantas , Isoformas de Proteínas
2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039713

RESUMEN

Many aspects of photoperception by plants and microorganisms are initiated by the phytochrome (Phy) family of photoreceptors that detect light through interconversion between red light- (Pr) and far-red light-absorbing (Pfr) states. Plants synthesize a small family of Phy isoforms (PhyA to PhyE) that collectively regulate photomorphogenesis and temperature perception through redundant and unique actions. While the selective roles of these isoforms have been partially attributed to their differing abundances, expression patterns, affinities for downstream partners, and turnover rates, we show here from analysis of recombinant Arabidopsis chromoproteins that the Phy isoforms also display distinct biophysical properties. Included are a hypsochromic shift in the Pr absorption for PhyC and varying rates of Pfr to Pr thermal reversion, part of which can be attributed to the core photosensory module in each. Most strikingly, PhyB combines strong temperature dependence of thermal reversion with an order-of-magnitude faster rate to likely serve as the main physiological thermosensor, whereby thermal reversion competes with photoconversion. In addition, comparisons of Pfr occupancies for PhyA and PhyB under a range of red- and white-light fluence rates imply that low-light environments are effectively sensed by PhyA, while high-light environments, such as full sun, are effectively sensed by PhyB. Parallel analyses of the Phy isoforms from potato and maize showed that the unique features within the Arabidopsis family are conserved, thus indicating that the distinct biophysical properties among plant Phy isoforms emerged early in Phy evolution, likely to enable full interrogation of their light and temperature environments.


Asunto(s)
Arabidopsis/fisiología , Fototransducción , Fitocromo/fisiología , Escherichia coli , Isoformas de Proteínas , Proteínas Recombinantes , Sensación Térmica
3.
Proc Natl Acad Sci U S A ; 116(17): 8603-8608, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948632

RESUMEN

The members of the phytochrome (phy) family of bilin-containing photoreceptors are major regulators of plant photomorphogenesis through their unique ability to photointerconvert between a biologically inactive red light-absorbing Pr state and an active far-red light-absorbing Pfr state. While the initial steps in Pfr signaling are unclear, an early event for the phyB isoform after photoconversion is its redistribution from the cytoplasm into subnuclear foci known as photobodies (PBs), which dissipate after Pfr reverts back to Pr by far-red irradiation or by temperature-dependent nonphotochemical reversion. Here we present evidence that PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) functions both as an essential structural component of phyB-containing PBs and as a direct regulator of thermal reversion that is sufficient to stabilize phyB as Pfr in vitro. By examining the genetic interaction between a constitutively active phyBY276H-YFP allele (YHB-YFP) and PCH1, we show that the loss of PCH1 prevents YHB from coalescing into PBs without affecting its nuclear localization, whereas overexpression of PCH1 dramatically increases PB levels. Loss of PCH1, presumably by impacting phyB-PB assembly, compromises a number of events elicited in YHB-YFP plants, including their constitutive photomorphogenic phenotype, red light-regulated thermomorphogenesis, and input of phyB into the circadian clock. Conversely, elevated levels of both phyB and PCH1 generate stable, yet far-red light-reversible PBs that persisted for days. Collectively, our data demonstrate that the assembly of PCH1-containing PBs is critical for phyB signaling to multiple outputs and suggest that altering PB dynamics could be exploited to modulate plant responses to light and temperature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Proteínas F-Box , Fitocromo B/metabolismo , Factores de Transcripción , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
4.
Sci Rep ; 7(1): 13648, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057954

RESUMEN

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream of an N-terminal Period/Arnt/Sim (PAS) domain, which upon removal dramatically accelerates thermal reversion. We also discovered that the nature of the bilin strongly influences Pfr stability. Whereas incorporation of the native bilin phytochromobilin into PhyB confers robust Pfr → Pr thermal reversion, that assembled with the cyanobacterial version phycocyanobilin, often used for optogenetics, has a dramatically stabilized Pfr state. Taken together, we conclude that Pfr acquisition and stability are impacted by a collection of opposing allosteric features that inhibit or promote photoconversion and reversion of Pfr back to Pr, thus allowing Phys to dynamically measure light, temperature, and possibly time.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fitocromo B/metabolismo , Fenómenos Fisiológicos de las Plantas , Regulación Alostérica , Arabidopsis , Proteínas de Arabidopsis/genética , Secuencia Conservada , Cinética , Luz , Mutación , Fitocromo B/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...