Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 24(8): 3218-3227, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659661

RESUMEN

One possible pathway toward reducing the cost of III-V solar cells is to remove them from their growth substrate by spalling fracture, and then reuse the substrate for the growth of multiple cells. Here we consider the growth of III-V cells on spalled GaAs(100) substrates, which typically have faceted surfaces after spalling. To facilitate the growth of high-quality cells, these faceted surfaces should be smoothed prior to cell growth. In this study, we show that these surfaces can be smoothed during organometallic vapor-phase epitaxy growth, but the choice of epilayer material and modification of the various surfaces by impurities/dopants greatly impacts whether or not the surface becomes smooth, and how rapidly the smoothing occurs. Representative examples are presented along with a discussion of the underlying growth processes. Although this work was motivated by solar cell growth, the methods are generally applicable to the growth of any III-V device on a nonplanar substrate.

2.
iScience ; 25(9): 104950, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36093056

RESUMEN

The pursuit of ever-higher solar cell efficiencies has focused heavily on multijunction technologies. In tandem cells, subcells are typically either contacted via two terminals (2T) or four terminals (4T). Simulations show that the less-common three-terminal (3T) design may be comparable to 4T tandem cells in its compatibility with a range of materials, operating conditions, and methods for subcell integration, yet the 3T design circumvents shading losses of the 4T intermediate conductive layers. This study analyzes the performance of two superstrate 3T III-V-on-Si (III-V//Si) tandem cells: One has slightly greater current contribution from the Si bottom cell (GaInP//Si) and the other has substantially greater current contribution from the GaAs top cell (GaAs//Si). Our results show that both tandem cells exhibit the same efficiency (21.3%), thereby demonstrating that the third terminal allows for flexibility in the selection of the top cell material, similar to the 4T design.

3.
ACS Omega ; 7(28): 24353-24364, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874259

RESUMEN

The high cost of substrates for III-V growth can be cost limiting for technologies that require large semiconductor areas. Thus, being able to separate device layers and reuse the original substrate is highly desirable, but existing techniques to lift a film from a substrate have substantial drawbacks. This work discusses some of the complexities with the growth of a water-soluble, alkali halide salt thin film between a III-V substrate and overlayer. Much of the difficulty stems from the growth of GaAs on an actively decomposing NaCl surface at elevated temperatures. Interestingly, the presence of an in situ electron beam incident on the NaCl surface, prior to and during GaAs deposition, affects the crystallinity and morphology of the III-V overlayer. Here, we investigate a wide range of growth temperatures and the timing of the impinging flux of both elemental sources and high energy electrons at different points during the growth. We show that an assortment of morphologies (discrete islands, porous material, and fully dense layers with sharp interfaces) and crystallinity (amorphous, crystalline, and highly textured) occur depending on the specific growth conditions, driven largely by changes in GaAs nucleation which is greatly affected by the presence of the reflection high energy electron diffraction beam.

4.
ACS Energy Lett ; 5(4): 1233-1242, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38435798

RESUMEN

Tandem and multijunction solar cells offer the only demonstrated path to terrestrial 1-sun solar cell efficiency over 30%. Three-terminal tandem (3TT) solar cells can overcome some of the limitations of two-terminal and four-terminal tandem solar cell designs. However, the coupled nature of the cells adds a degree of complexity to the devices themselves and the ways that their performance can be measured and reported. While many different configurations of 3TT devices have been proposed, there is no standard taxonomy to discuss the device structure or loading topology. This Perspective proposes a taxonomy for 3TT solar cells to enable a common nomenclature for discussing these devices and their performance. It also provides a brief history of three-terminal devices in the literature and demonstrates that many different 3TT devices can work at efficiencies above 30% if properly designed.

5.
Opt Express ; 22 Suppl 5: A1243-56, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25322179

RESUMEN

The successful development of multijunction photovoltaic devices with four or more subcells has placed additional importance on the design of high-quality broadband antireflection coatings. Antireflective nanostructures have shown promise for reducing reflection loss compared to the best thin-film interference coatings. However, material constraints make nanostructures difficult to integrate without introducing additional absorption or electrical losses. In this work, we compare the performance of various nanostructure configurations with that of an optimized multilayer antireflection coating. Transmission into a four-junction solar cell is computed for each antireflective design, and the corresponding cell efficiency is calculated. We find that the best performance is achieved with a hybrid configuration that combines nanostructures with a multilayer thin-film optical coating. This approach increases transmitted power into the top subcell by 1.3% over an optimal thin-film coating, corresponding to an increase of approximately 0.8% in the modeled cell efficiency.

6.
Nano Lett ; 14(10): 5960-4, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25238041

RESUMEN

Optical thin-film coatings are typically limited to designs where the refractive index varies in only a single dimension. However, additional control over the propagation of incoming light is possible by structuring the other two dimensions. In this work, we demonstrate a three-dimensional surface structured optical coating that combines the principles of thin-film optical design with bio-inspired nanostructures to yield near-perfect antireflection. Using this hybrid approach, we attain average reflection losses of 0.2% on sapphire and 0.6% on gallium nitride for 300-1800 nm light. This performance is maintained to very wide incidence angles, achieving less than 1% reflection at all measured wavelengths out to 45° for sapphire. This hybrid design has the potential to significantly enhance the broadband and wide-angle properties for a number of optical systems that require high transparency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...