Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 179(4): 299-306, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19011150

RESUMEN

RATIONALE: The mechanisms by which oxidants are sensed by cells and cause inflammation are not well understood. OBJECTIVES: This study aimed to determine how cells "sense" soluble oxidants and how this is translated into an inflammatory reaction. METHODS: Monocytes, macrophages, or HEK293 cells (stably transfected with human Toll-like receptor [TLR]2, TLR2/1, TLR2/6, or TLR4/MD2-CD14) were used. CXC ligand-8 (CXCL8) levels were measured using ELISA. Phosphorylated IL-1 receptor-associated kinase 1 levels were measured using Western blot. TLR2(-/-) and TLR4(-/-) mice were challenged with oxidants, and inflammation was measured by monitoring cell infiltration and KC levels. MEASUREMENTS AND MAIN RESULTS: Oxidants evoked the release of CXCL8 from monocytes/macrophages; this was abrogated by pretreatment with N-acetylcysteine or binding antibodies to TLR2 and was associated with the rapid phosphorylation of IL-1 receptor-associated kinase 1. Oxidants added to HEK293 cells transfected with TLR2, TLR1/2, or TLR2/6 but not TLR4/MD2-CD14 or control HEK nulls resulted in the release of CXCL8. Oxidant challenge delivered intraperitoneally (2-24 hours) or by inhalation to the lungs (3 days) resulted in a robust inflammation in wild-type mice. TLR2(-/-) mice did not respond to oxidant challenge in either model. TLR4(-/-) mice responded as wild-type mice to oxidants at 2 hours but as TLR2(-/-) mice at later time points. CONCLUSIONS: Oxidant-TLR2 interactions provide a signal that initiates the inflammatory response.


Asunto(s)
Bronquitis/metabolismo , Oxidantes/metabolismo , Peritonitis/metabolismo , Receptor Toll-Like 2/inmunología , Animales , Western Blotting/métodos , Bronquitis/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidantes/inmunología , Estrés Oxidativo , Peritonitis/inmunología , Fumar/inmunología , Fumar/metabolismo
2.
FASEB J ; 22(11): 4005-10, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18753249

RESUMEN

Cyclooxygenase (COX) -1 and COX-2 are expressed in airway cells, where their activities influence functions such as airway hyperreactivity. Clinical data show that mixed COX-1/COX-2 inhibitors such as aspirin, but not COX-2 selective inhibitors such as rofecoxib, induce bronchoconstriction and asthma in sensitive individuals. This anomaly has not yet been explained. Here, we have used tissue from genetically modified mice lacking functional COX-1 (COX-1(-/-)), as well as airway tissue from "aspirin-sensitive" and control patients to address this issue. Bronchi from wild-type mice contained predominantly COX-1 immunoreactivity and contracted in vitro in response to acetylcholine and U46619. Bronchi from COX-1(-/-) mice were hyperresponsive to bronchoconstrictors. Inhibitors of COX (naproxen, diclofenac, or ibuprofen) increased bronchoconstriction in tissue from wild-type but not from COX-1(-/-) mice. Cells cultured from aspirin-sensitive or control human donors contained similar levels of COX-1 and COX-2 immunoreactivity. COX activity in cells from aspirin-sensitive or tolerant patients was inhibited by aspirin, SC560, which blocks COX-1 selectively, but not by rofecoxib, which is a selective inhibitor of COX-2. These observations show that despite the presence of COX-2, COX-1 is functionally predominant in the airways and explains clinical observations relating to drug specificity in patients with aspirin-sensitive asthma.


Asunto(s)
Aspirina/efectos adversos , Asma/enzimología , Broncoconstricción/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Inhibidores de la Ciclooxigenasa 2/efectos adversos , Ciclooxigenasa 2/metabolismo , Hipersensibilidad a las Drogas/enzimología , Proteínas de la Membrana/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Acetilcolina/farmacología , Animales , Aspirina/farmacología , Asma/inducido químicamente , Asma/genética , Bronquios/enzimología , Broncoconstricción/genética , Broncoconstrictores/farmacología , Células Cultivadas , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Inhibidores de la Ciclooxigenasa 2/farmacología , Hipersensibilidad a las Drogas/genética , Humanos , Lactonas/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mucosa Respiratoria/enzimología , Sulfonas/farmacología , Vasoconstrictores/farmacología
3.
J Endocrinol ; 193(3): 323-30, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17535871

RESUMEN

Pathogens are sensed by pattern recognition receptors (PRRs), which are germ line-encoded receptors, including transmembrane Toll-like receptors (TLRs) and cytosolic nucleotide oligomerisation domain (NOD) proteins, containing leucine-rich repeats (NLRs). Activation of PRRs by specific pathogen-associated molecular patterns (PAMPs) results in genomic responses in host cells involving activation transcription factors and the induction of genes. There are now at least 10 TLRs in humans and 13 in mice, and 2 NLRs (NOD1 and NOD2). TLR signalling is via interactions with adaptor proteins including MyD88 and toll-receptor associated activator of interferon (TRIF). NOD signalling is via the inflammasome and involves activation of Rip-like interactive clarp kinase (RICK). Bacterial lipopolysaccharide (LPS) from Gram-negative bacteria is the best-studied PAMP and is activated by or 'sensed' by TLR4. Lipoteichoic acid (LTA) from Gram-positive bacteria is sensed by TLR2. TLR4 and TLR2 have different signalling cascades, although activation of either results in symptoms of sepsis and shock. This review describes the rapidly expanding field of pathogen-sensing receptors and uses LPS and LTA as examples of how these pathways parallel and diverge from each other. The role of pathogen-sensing pathways in disease is also discussed.


Asunto(s)
Infecciones Bacterianas/inmunología , Proteínas Adaptadoras de Señalización NOD/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Animales , Infecciones Bacterianas/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Ratones , Proteínas Virales/metabolismo , Virosis/inmunología , Virosis/metabolismo
4.
Am J Respir Crit Care Med ; 175(6): 595-603, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17234906

RESUMEN

RATIONALE: NLRs (nucleotide oligomerisation domain [NOD] proteins containing a leucine-rich repeat) are cytosolic pattern recognition receptors. NOD1 senses diaminopimelic acid-containing peptidoglycan present in gram-negative bacteria, whereas NOD2 senses the muramyl dipeptide (MDP) present in most organisms. Bacteria are the most common cause of septic shock, which is characterized clinically by hypotension resistant to vasopressor agents. In animal models, gram-negative septic shock is mimicked by lipopolysaccharide (LPS), which signals through Toll-like receptor 4 (TLR4) and its adaptor MyD88. The role of NLRs in the pathophysiology of septic shock is not known. OBJECTIVES: To compare the effects of selective NOD1 agonists with LPS in vivo. METHODS: Vascular smooth muscle cells or whole aortas from wild-type or genetically modified mice were stimulated in vitro with agonists of NOD1 (FK565) or NOD2 (MDP). Vasoconstriction was measured using wire myography. Nitric oxide (NO) formation was measured using Griess reaction and NO synthase-II protein by Western blotting. In vivo, blood pressure, heart rate, and urine output were measured in sham-, LPS-, or FK565-treated animals. Biomarkers of end-organ injury, coagulation activation, NO, and cytokines were measured in plasma. MAIN RESULTS: FK565, but not MDP, induced NO synthase-II protein/activity in vascular smooth muscle and vascular hyporeactivity to pressor agents. FK565 had no effect on vessels from NOD1(-/-) mice, but was active in vessels from TLR4(-/-), TLR2(-/-), or MyD88(-/-) mice. FK565 induced hypotension, increased heart rate, and caused multiple (renal, liver) injury and dysfunction in vivo. CONCLUSIONS: Activation of NOD1 induces shock and multiple organ injury/dysfunction.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina/análogos & derivados , Proteínas Adaptadoras Transductoras de Señales/agonistas , Adyuvantes Inmunológicos/farmacología , Insuficiencia Multiorgánica/inducido químicamente , Proteína Adaptadora de Señalización NOD1/agonistas , Oligopéptidos/farmacología , Choque/inducido químicamente , Acetilmuramil-Alanil-Isoglutamina/farmacología , Animales , Antitrombina III , Aorta/metabolismo , Aorta/patología , Presión Sanguínea/efectos de los fármacos , Citocinas/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Riñón/efectos de los fármacos , Lipopolisacáridos/farmacología , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neutrófilos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Páncreas/efectos de los fármacos , Péptido Hidrolasas/sangre
5.
Shock ; 27(1): 40-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17172979

RESUMEN

Pathogens contain specific pathogen-associated molecular patterns, which activate pattern recognition receptors of the innate immune system such as Toll-like receptors (TLRs). Although there is a clear evidence of how macrophages sense pathogens, we know less about such processes in vessels. This is critical to understand because activation of vascular cells and the subsequent induction of inflammatory genes by bacteria are crucial events in the development of septic shock. In the current study we have used genetically modified mice to investigate the role of TLRs, adapter proteins, tumor necrosis factor alpha (TNFalpha), and nitric oxide synthase II (NOSII) in vascular dysfunction induced by Gram-positive (Staphylococcus aureus) or Gram-negative (Escherichia coli) bacteria. Our data show that Gram-positive S. aureus or Gram-negative E. coli causes vascular dysfunction via the induction of NOSII. For S. aureus, this process requires TLR2, TLR6, myeloid differentiation factor 88 (MyD88) adapter-like, MyD88, and TNF, but not TLR4 or TLR1. Vascular dysfunction induced by E. coli requires TLR4 but has no requirement for TLR2, TLR1, TLR6, or TNF, and a partial but incomplete requirement of MyD88 and TIR domain-containing adapter inducing interferon-beta. Staphylococcus aureus induced NOSII protein expression in vascular smooth muscle cells but not in macrophages, whereas E. coli induced NOSII in both cell types. Our data are the first to establish the definitive roles of specific TLRs in the sensing of Gram-positive and Gram-negative bacteria by vessels and demonstrate that macrophages and blood vessels may differ in their response to pathogens.


Asunto(s)
Escherichia coli/fisiología , Transducción de Señal/fisiología , Staphylococcus aureus/fisiología , Receptores Toll-Like/fisiología , Enfermedades Vasculares/patología , Animales , Células Cultivadas , Macrófagos/enzimología , Ratones , Ratones Noqueados , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Ratas , Enfermedades Vasculares/microbiología
6.
Br J Pharmacol ; 148(8): 1067-75, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16783405

RESUMEN

1. Gram-negative and Gram-positive bacteria are sensed by Toll-like receptor (TLR)4 and TLR2, respectively. TLR4 recruits MyD88 and TRIF, whereas TLR2 recruits MyD88 without TRIF. NOSII and TNFalpha are central genes in innate immunity and are thought to be differentially regulated by the MyD88 versus TRIF signalling pathways. Here, we have used Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and highly selective TLR ligands to establish the precise relationship between TLR2, TLR1, TLR6 and TLR4 for NOSII versus TNFalpha induction. 2. In murine macrophages at 24 h, E. coli or LPS (TLR4) induced NO and TNFalpha release. In contrast, S. aureus (TLR2/TLR1/TLR6) or Pam(3)CSK4 (TLR2/TLR1), or FSL-1 and LTA (TLR2/TLR6) induced TNFalpha without an effect on NO. 3. At later time points (48-72 h), S. aureus induced NO release. The ability of S. aureus, but not E. coli or LPS, to induce NO release was inhibited by anti-TNFalpha-binding antibodies. 4. At 24 h, LPS synergised with TLR2 ligands to induce NO release and NOSII protein expression. LPS also induced the expression of TLR2 gene expression without affecting levels of TLR4. 5. Using cells from TLR2(-/-) or TLR4(-/-) mice, the ability of LPS to synergise with S. aureus or Pam(3)CSK4 was found to be dependent on both TLR2 and TLR4. 6. These observations are the first to clearly delineate the role of separately activating TLR2 and TLR4 in the induction of NOSII and TNFalpha genes compared with their coinduction when both receptor pathways are activated.


Asunto(s)
Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Activación de Macrófagos , Macrófagos/enzimología , Macrófagos/microbiología , Ratones , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
7.
Mol Pharmacol ; 68(5): 1343-53, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16061772

RESUMEN

Smoking cigarettes is a major risk factor for the development of cardiovascular and respiratory disease. Moreover, smoking-induced pathophysiology is often resistant to the anti-inflammatory effects of glucocorticoids. The nature of cigarette smoke-induced inflammation is still not defined, although neutrophil recruitment and activation seem to be consistent features. In the current study, we have used a range of approaches to demonstrate that cigarette smoke activates human monocytes and macrophages to release the CXC chemokine CXCL8 [(interleukin-8 (IL-8)]. Furthermore, we show for the first time that cigarette smoke synergizes with proinflammatory cytokines IL-1beta and tumor necrosis factor-alpha, and it is this interaction that confers steroid resistance to smoke-induced CXCL8 release. We go on to show that smoke-induced activation of human cells is an oxidant-mediated phenomenon acting through activator protein-1, but not nuclear factor kappaB, pathway. These observations add significantly to our understanding of smoke as an inflammatory stimulus that has implications for potential the development of treatments of smoking or related disease.


Asunto(s)
Glucocorticoides/farmacología , Inflamación/etiología , Monocitos/fisiología , Transducción de Señal/fisiología , Fumar/efectos adversos , Factor de Transcripción AP-1/fisiología , Células Cultivadas , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Resistencia a Medicamentos , Humanos , Interleucina-1/farmacología , Macrófagos/fisiología , Estrés Oxidativo , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...