Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34358113

RESUMEN

The anti-microbial peptide (AMP) pleurocidin is found in winter flounder (Pseudopleuronectes americanus), an Atlantic flounder species. There is promising evidence for clinical, aquaculture, and veterinary applications of pleurocidin. This review provides an overview of the current literature available on pleurocidin to guide future research directions. By fully elucidating pleurocidin's mechanism of action and developing novel treatments against pathogenic microbes, populations of flatfish and humans can be protected. This review consulted publications from PubMed and Environment Complete with search terms such as "pleurocidin", "winter flounder", and "antimicrobial". The fish immune system includes AMPs as a component of the innate immune system. Pleurocidin, one of these AMPs, has been found to be effective against various Gram-positive and Gram-negative bacteria. More investigations are required to determine pleurocidin's suitability as a treatment against antibiotic-resistant pathogens. There is promising evidence for pleurocidin as a novel anti-cancer therapy. The peptide has been found to display potent anti-cancer effects against human cancer cells. Research efforts focused on pleurocidin may result in novel treatment strategies against antibiotic-resistant bacteria and cancer. More research is required to determine if the peptide is a suitable candidate to be developed into a novel anti-microbial treatment. Some of the microbes susceptible to the peptide are also pathogens of fish, suggesting its suitability as a therapeutic treatment for fish species.

2.
Anticancer Res ; 41(2): 601-608, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33517264

RESUMEN

BACKGROUND/AIM: Hepcidin is a cationic acute phase reactant synthesized by the liver. It has bactericidal properties and is a major regulator of iron homeostasis. Cationic antimicrobial peptides represent an innate antimicrobial defense system. We hypothesized that, like other cationic antimicrobial peptides, hepcidin is cytotoxic to cancer cells. MATERIALS AND METHODS: The cytotoxicity of human hepcidin against myeloma cells was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and DNA fragmentation assays. Plasma membrane damage was quantified by propidium iodide (PI) staining. Cell membrane changes were visualized by scanning electron microscopy. RESULTS: Hepcidin impaired myeloma cell survival and induced DNA fragmentation. PI staining and scanning electron microscopy revealed hepcidin-induced disruption of the plasma membrane. CONCLUSION: Human hepcidin is an anti-cancer peptide that induces myeloma cell lysis, and therefore may play a role in innate anticancer immunity. To our knowledge, this is the first biological function ascribed to human hepcidin that is not related to its antimicrobial and iron-regulatory properties.


Asunto(s)
Antineoplásicos/farmacología , Hepcidinas/farmacología , Mieloma Múltiple/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN , Metabolismo Energético/efectos de los fármacos , Humanos , Ratones , Mieloma Múltiple/metabolismo , Mieloma Múltiple/ultraestructura
3.
Molecules ; 25(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233580

RESUMEN

Host defense peptides (HDPs) are a group of antimicrobial peptides (AMPs) that are crucial components of the innate immune system of many different organisms. These small peptides actively kill microbes and prevent infection. Despite the presence of AMPs in the amphibian immune system, populations of these organisms are in decline globally. Magainin is an AMP derived from the African clawed frog (Xenopus laevis) and has displayed potent antimicrobial effects against a wide variety of microbes. Included in this group of microbes are known pathogens of the African clawed frog and other amphibian species. Arguably, the most deleterious amphibious pathogen is Batrachochytrium dendrobatidis, a chytrid fungus. Investigating the mechanism of action of magainin can help understand how to effectively fight off infection. By understanding amphibian AMPs' role in the frog, a potential conservation strategy can be developed for other species of amphibians that are susceptible to infections, such as the North American green frog (Rana clamitans). Considering that population declines of these organisms are occurring globally, this effort is crucial to protect not only these organisms but the ecosystems they inhabit as well.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Magaininas/farmacología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Anuros/inmunología , Anuros/metabolismo , Inmunidad , Magaininas/química , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA