Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220339, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37691463

RESUMEN

Crystalline two-dimensional carbon nitrides with polytriazine imide (PTI) structure are shown to act amphoterically, buffering both HCl and NaOH aqueous solutions, resulting in charged PTI layers that dissolve spontaneously in their aqueous media, particularly for the alkaline solutions. This provides a low energy, green route to their scalable solution processing. Protonation in acid is shown to occur at pyridinic nitrogens, stabilized by adjacent triazines, whereas deprotonation in base occurs primarily at basal plane NH bridges, although NH2 edge deprotonation is competitive. We conclude that mildly acidic or basic pHs are necessary to provide sufficient net charge on the nanosheets to promote dissolution, while avoiding high ion concentrations which screen the repulsion of like-charged PTI sheets in solution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220340, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37691469

RESUMEN

Amyloid fibrils have been associated with human disease for many decades, but it has also become apparent that they play a functional, non-disease-related role in e.g. bacteria and mammals. Moreover, they have been shown to possess interesting mechanical properties that can be harnessed for future man-made applications. Here, the mechanical behaviour of SSTSAA microcrystals has been investigated. The SSTSAA peptide organization in these microcrystals has been related to that in the corresponding amyloid fibrils. Using high-pressure X-ray diffraction experiments, the bulk modulus K, which is the reciprocal of the compressibility ß, has been calculated to be 2.48 GPa. This indicates that the fibrils are tightly packed, although the packing of most native globular proteins is even better. It is shown that the value of the bulk modulus is mainly determined by the compression along the c-axis, that relates to the inter-sheet distance in the fibrils. These findings corroborate earlier data obtained by AFM and molecular dynamics simulations that showed that mechanical resistance varies according to the direction of the applied strain, which can be related to packing and hydrogen bond contributions. Pressure experiments provide complementary information to these techniques and help to acquire a full mechanical characterization of biomolecular assemblies. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.


Asunto(s)
Amiloide , Compresión de Datos , Animales , Humanos , Difracción de Rayos X , Mamíferos
3.
J Mater Chem A Mater ; 10(37): 20121-20127, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36277421

RESUMEN

Graphene-related materials are promising supports for electrocatalysts due to their stability and high surface area. Their innate surface chemistries can be controlled and tuned via functionalisation to improve the stability of both the carbon support and the metal catalyst. Functionalised graphenes were prepared using either aryl diazonium functionalisation or non-destructive chemical reduction, to provide groups adapted for platinum deposition. XPS and TGA-MS measurements confirmed the presence of polyethyleneglycol and sulfur-containing functional groups, and provided consistent values for the extent of the reactions. The deposited platinum nanoparticles obtained were consistently around 2 nm via reductive chemistry and around 4 nm via the diazonium route. Although these graphene-supported electrocatalysts provided a lower electrochemical surface area (ECSA), functionalised samples showed enhanced specific activity compared to a commercial platinum/carbon black system. Accelerated stress testing (AST) showed improved durability for the functionalised graphenes compared to the non-functionalised materials, attributed to edge passivation and catalyst particle anchoring.

4.
Proc Natl Acad Sci U S A ; 119(30): e2203672119, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867827

RESUMEN

Studies of dense carbon materials formed by bolide impacts or produced by laboratory compression provide key information on the high-pressure behavior of carbon and for identifying and designing unique structures for technological applications. However, a major obstacle to studying and designing these materials is an incomplete understanding of their fundamental structures. Here, we report the remarkable structural diversity of cubic/hexagonally (c/h) stacked diamond and their association with diamond-graphite nanocomposites containing sp3-/sp2-bonding patterns, i.e., diaphites, from hard carbon materials formed by shock impact of graphite in the Canyon Diablo iron meteorite. We show evidence for a range of intergrowth types and nanostructures containing unusually short (0.31 nm) graphene spacings and demonstrate that previously neglected or misinterpreted Raman bands can be associated with diaphite structures. Our study provides a structural understanding of the material known as lonsdaleite, previously described as hexagonal diamond, and extends this understanding to other natural and synthetic ultrahard carbon phases. The unique three-dimensional carbon architectures encountered in shock-formed samples can place constraints on the pressure-temperature conditions experienced during an impact and provide exceptional opportunities to engineer the properties of carbon nanocomposite materials and phase assemblages.

5.
Nat Mater ; 21(5): 555-563, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301475

RESUMEN

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Asunto(s)
Polímeros , Agua , Aniones , Intercambio Iónico , Iones , Membranas Artificiales , Polímeros/química , Agua/química
6.
ACS Appl Mater Interfaces ; 13(51): 61215-61226, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34905920

RESUMEN

Two-dimensional (2D) materials are promising components for defect passivation of metal halide perovskites. Unfortunately, commonly used polydisperse liquid-exfoliated 2D materials generally suffer from heterogeneous structures and properties while incorporated into perovskite films. We introduce monodisperse multifunctional 2D crystalline carbon nitride, poly(triazine imide) (PTI), as an effective defect passivation agent in perovskite films via typical solution processing. Incorporation of PTI into perovskite film can be readily attained by simple solution mixing of PTI dispersions with perovskite precursor solutions, resulting in the highly selective distribution of PTI localized at the defective crystal grain boundaries and layer interfaces in the functional perovskite layer. Several chemical, optical, and electronic characterizations, in conjunction with density functional theory calculations, reveal multiple beneficial roles from PTI: passivation of undercoordinated organic cations at the surface of perovskite crystal, suppression of ion migration by blocking diffusion channels, and prevention of hole quenching at perovskite/SnO2 interfaces. Consequently, a noticeably improved power conversion efficiency is achieved in perovskite solar cells, accompanied with promoted stability under humid air and thermal stress. Our strategy highlights the potential of judiciously designed 2D materials as a simple-to-implement material for various optoelectronic devices, including solar cells, based on hybrid perovskites.

7.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34684971

RESUMEN

Polymer electrolyte fuel cells hold great promise for a range of applications but require advances in durability for widespread commercial uptake. Corrosion of the carbon support is one of the main degradation pathways; hence, corrosion-resilient graphene has been widely suggested as an alternative to traditional carbon black. However, the performance of bulk graphene-based electrodes is typically lower than that of commercial carbon black due to their stacking effects. This article reports a simple, scalable and non-destructive method through which the pore structure and platinum utilisation of graphene-based membrane electrode assemblies can be significantly improved. Urea is incorporated into the catalyst ink before deposition, and is then simply removed from the catalyst layer after spraying by submerging the electrode in water. This additive hinders graphene restacking and increases porosity, resulting in a significant increase in Pt utilisation and current density. This technique does not require harsh template etching and it represents a pathway to significantly improve graphene-based electrodes by introducing hierarchical porosity using scalable liquid processes.

9.
J Phys Condens Matter ; 33(26)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33906172

RESUMEN

Design and implementation of advanced membrane formulations for selective transport of ions and molecular species are critical for creating the next generations of fuel cells and separation devices. It is necessary to understand the detailed transport mechanisms over time- and length-scales relevant to the device operation, both in laboratory models and in working systems under realistic operational conditions. Neutron scattering techniques including quasi-elastic neutron scattering, reflectivity and imaging are implemented at beamline stations at reactor and spallation source facilities worldwide. With the advent of new and improved instrument design, detector methodology, source characteristics and data analysis protocols, these neutron scattering techniques are emerging as a primary tool for research to design, evaluate and implement advanced membrane technologies for fuel cell and separation devices. Here we describe these techniques and their development and implementation at the ILL reactor source (Institut Laue-Langevin, Grenoble, France) and ISIS Neutron and Muon Spallation source (Harwell Science and Technology Campus, UK) as examples. We also mention similar developments under way at other facilities worldwide, and describe approaches such as combining optical with neutron Raman scattering and x-ray absorption with neutron imaging and tomography, and carrying out such experiments in specialised fuel cells designed to mimic as closely possible actualoperandoconditions. These experiments and research projects will play a key role in enabling and testing new membrane formulations for efficient and sustainable energy production/conversion and separations technologies.

10.
Nature ; 589(7840): 22-23, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408371
11.
Sci Adv ; 6(39)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32978165

RESUMEN

Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes.

12.
13.
Nano Lett ; 20(5): 3611-3619, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32267704

RESUMEN

The search for new nanostructural topologies composed of elemental carbon is driven by technological opportunities as well as the need to understand the structure and evolution of carbon materials formed by planetary shock impact events and in laboratory syntheses. We describe two new families of diamond-graphene (diaphite) phases constructed from layered and bonded sp3 and sp2 nanostructural units and provide a framework for classifying the members of this new class of materials. The nanocomposite structures are identified within both natural impact diamonds and laboratory-shocked samples and possess diffraction features that have previously been assigned to lonsdaleite and postgraphite phases. The diaphite nanocomposites represent a new class of high-performance carbon materials that are predicted to combine the superhard qualities of diamond with high fracture toughness and ductility enabled by the graphitic units and the atomically defined interfaces between the sp3- and sp2-bonded nanodomains.

14.
Nanomaterials (Basel) ; 9(9)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470589

RESUMEN

We report a single-step route to co-deposit Cu nanoparticles with a graphitic carbon nitride (gCN) support using nanosecond Ce:Nd:YAG pulsed laser ablation from a Cu metal target coated using acetonitrile (CH3CN). The resulting Cu/gCN hybrids showed strong optical absorption in the visible to near-IR range and exhibited surface-enhanced Raman or resonance Raman scattering (SERS or SERRS) enhancement for crystal violet (CV), methylene blue (MB), and rhodamine 6G (R6G) used as probe analyte molecules adsorbed on the surface. We have characterized the Cu nanoparticles and the nature of the gCN support materials using a range of spectroscopic, structural, and compositional analysis techniques.

15.
Sci Rep ; 9(1): 10334, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316094

RESUMEN

Diamond is a material of immense technological importance and an ancient signifier for wealth and societal status. In geology, diamond forms as part of the deep carbon cycle and typically displays a highly ordered cubic crystal structure. Impact diamonds, however, often exhibit structural disorder in the form of complex combinations of cubic and hexagonal stacking motifs. The structural characterization of such diamonds remains a challenge. Here, impact diamonds from the Popigai crater were characterized with a range of techniques. Using the MCDIFFaX approach for analysing X-ray diffraction data, hexagonality indices up to 40% were found. The effects of increasing amounts of hexagonal stacking on the Raman spectra of diamond were investigated computationally and found to be in excellent agreement with trends in the experimental spectra. Electron microscopy revealed nanoscale twinning within the cubic diamond structure. Our analyses lead us to propose a systematic protocol for assigning specific hexagonality attributes to the mineral designated as lonsdaleite among natural and synthetic samples.

16.
Sci Rep ; 9(1): 8716, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213614

RESUMEN

Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by -10-30%) and an increase in rotational relaxation times (+10-40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.


Asunto(s)
Citoplasma/metabolismo , Hidrodinámica , Shewanella/metabolismo , Agua/metabolismo , Transporte Biológico , Difusión , Cinética , Difracción de Neutrones/métodos , Neutrones , Presión , Shewanella/citología , Viscosidad
17.
Philos Trans A Math Phys Eng Sci ; 377(2147): 20180244, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31030648

RESUMEN

We describe work carried out within our group to explore new transition metal and main group nitride phases synthesized using high pressure-high temperature techniques using X-ray diffraction and spectroscopy at synchrotron sources in the USA, UK and France to establish their structures and physical properties. Along with previously published data, we also highlight additional results that have not been presented elsewhere and that represent new areas for further exploration. We also describe new work being carried out to explore the properties of carbon nitride materials being developed for energy applications and the nature of few-layered carbon nitride nanomaterials with atomically ordered structures that form solutions in polar liquids via thermodynamically driven exfoliation. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.

18.
Chem Sci ; 10(8): 2519-2528, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30881682

RESUMEN

The development of processes to tune the properties of materials is essential for the progression of next-generation technologies for catalysis, optoelectronics and sustainability including energy harvesting and conversion. Layered carbon nitrides have also been identified as of significant interest within these fields of application. However, most carbon nitride materials studied to date have poor crystallinity and therefore their properties cannot be readily controlled or easily related to their molecular level or nanoscale structures. Here we report a process for forming a range of crystalline layered carbon nitrides with polytriazine imide (PTI) structures that can be interconverted by simple ion exchange processes, permitting the tunability of their optoelectronic and chemical properties. Notable outcomes of our work are (a) the creation of a crystalline, guest-ion-free PTI compound that (b) can be re-intercalated with ions or molecules using "soft chemistry" approaches. This includes the intercalation of HCl, demonstrating a new ambient pressure route to the layered PTI·xHCl material that was previously only available by a high-pressure-high-temperature route (c). Our work also shows (d) that the intercalant-free (IF-) PTI material spontaneously absorbs up to 10 weight% H2O from the ambient atmosphere and that this process is reversible, leading to potential applications for membranes and water capture in dry environments.

19.
Angew Chem Int Ed Engl ; 57(39): 12656-12660, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30095209

RESUMEN

Two-dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one-pot reductive method to produce solutions of single- and few-layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High-resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.

20.
Nanomaterials (Basel) ; 8(6)2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899292

RESUMEN

Carbon nitride materials with graphitic to polymeric structures (gCNH) were investigated as catalyst supports for the proton exchange membrane (PEM) water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content. This resulted in a significant enhancement of the performance of the gCNH-IrO2 (or N-doped C-IrO2) electrocatalyst that was likely attributed to higher electrical conductivity of the N-doped carbon support.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...