Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4063, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773066

RESUMEN

Fossil feathers have transformed our understanding of integumentary evolution in vertebrates. The evolution of feathers is associated with novel skin ultrastructures, but the fossil record of these changes is poor and thus the critical transition from scaled to feathered skin is poorly understood. Here we shed light on this issue using preserved skin in the non-avian feathered dinosaur Psittacosaurus. Skin in the non-feathered, scaled torso is three-dimensionally replicated in silica and preserves epidermal layers, corneocytes and melanosomes. The morphology of the preserved stratum corneum is consistent with an original composition rich in corneous beta proteins, rather than (alpha-) keratins as in the feathered skin of birds. The stratum corneum is relatively thin in the ventral torso compared to extant quadrupedal reptiles, reflecting a reduced demand for mechanical protection in an elevated bipedal stance. The distribution of the melanosomes in the fossil skin is consistent with melanin-based colouration in extant crocodilians. Collectively, the fossil evidence supports partitioning of skin development in Psittacosaurus: a reptile-type condition in non-feathered regions and an avian-like condition in feathered regions. Retention of reptile-type skin in non-feathered regions would have ensured essential skin functions during the early, experimental stages of feather evolution.


Asunto(s)
Evolución Biológica , Dinosaurios , Plumas , Fósiles , Melanosomas , Reptiles , Piel , Animales , Plumas/anatomía & histología , Dinosaurios/anatomía & histología , Piel/anatomía & histología , Piel/metabolismo , Reptiles/anatomía & histología , Melanosomas/metabolismo , Melanosomas/ultraestructura , Escamas de Animales/anatomía & histología , Epidermis/anatomía & histología , Epidermis/metabolismo , Epidermis/ultraestructura , beta-Queratinas/metabolismo
2.
Sci Rep ; 14(1): 7876, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654038

RESUMEN

The Eocene Geiseltal Konservat-Lagerstätte (Germany) is famous for reports of three dimensionally preserved soft tissues with sub-cellular detail. The proposed mode of preservation, direct replication in silica, is not known in other fossils and has not been verified using modern approaches. Here, we investigated the taphonomy of the Geiseltal anurans using diverse microbeam imaging and chemical analytical techniques. Our analyses confirm the preservation of soft tissues in all body regions but fail to yield evidence for silicified soft tissues. Instead, the anuran soft tissues are preserved as two layers that differ in microstructure and composition. Layer 1 comprises sulfur-rich carbonaceous microbodies interpreted as melanosomes. Layer 2 comprises the mid-dermal Eberth-Katschenko layer, preserved in calcium phosphate. In addition, patches of original aragonite crystals define the former position of the endolymphatic sac. The primary modes of soft tissue preservation are therefore sulfurization of melanosomes and phosphatization of more labile soft tissues, i.e., skin. This is consistent with the taphonomy of vertebrates in many other Konservat-Lagerstätten. These findings emphasize an emerging model for pervasive preservation of vertebrate soft tissues via melanosome films, particularly in stagnation-type deposits, with phosphatization of more labile tissues where tissue biochemistry is favorable.


Asunto(s)
Anuros , Fósiles , Animales , Anuros/anatomía & histología , Alemania , Melanosomas/metabolismo
3.
Nat Commun ; 14(1): 5651, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803012

RESUMEN

Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.


Asunto(s)
Fósiles , Melaninas , Animales , Melaninas/química , Pigmentación , Vertebrados , Plumas
4.
Proc Biol Sci ; 290(2007): 20231333, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37727088

RESUMEN

Many fossil insects show monochromatic colour patterns that may provide valuable insights into ancient insect behaviour and ecology. Whether these patterns reflect original pigmentary coloration is, however, unknown, and their formation mechanism has not been investigated. Here, we performed thermal maturation experiments on extant beetles with melanin-based colour patterns. Scanning electron microscopy reveals that melanin-rich cuticle is more resistant to degradation than melanin-poor cuticle: with progressive maturation, melanin-poor cuticle regions experience preferential thinning and loss, yet melanin-rich cuticle remains. Comparative analysis of fossil insects with monotonal colour patterns confirms that the variations in tone correspond to variations in preserved cuticle thickness. These preserved colour patterns can thus be plausibly explained as melanin-based patterning. Recognition of melanin-based colour patterns in fossil insects opens new avenues for interpreting the evolution of insect coloration and behaviour through deep time.


Asunto(s)
Escarabajos , Fósiles , Animales , Color , Melaninas , Insectos
5.
Nat Ecol Evol ; 7(10): 1706-1713, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735563

RESUMEN

Fossil proteins are valuable tools in evolutionary biology. Recent technological advances and better integration of experimental methods have confirmed the feasibility of biomolecular preservation in deep time, yielding new insights into the timing of key evolutionary transitions. Keratins (formerly α-keratins) and corneous ß-proteins (CBPs, formerly ß-keratins) are of particular interest as they define tissue structures that underpin fundamental physiological and ecological strategies and have the potential to inform on the molecular evolution of the vertebrate integument. Reports of CBPs in Mesozoic fossils, however, appear to conflict with experimental evidence for CBP degradation during fossilization. Further, the recent model for molecular modification of feather chemistry during the dinosaur-bird transition does not consider the relative preservation potential of different feather proteins. Here we use controlled taphonomic experiments coupled with infrared and sulfur X-ray spectroscopy to show that the dominant ß-sheet structure of CBPs is progressively altered to α-helices with increasing temperature, suggesting that (α-)keratins and α-helices in fossil feathers are most likely artefacts of fossilization. Our analyses of fossil feathers shows that this process is independent of geological age, as even Cenozoic feathers can comprise primarily α-helices and disordered structures. Critically, our experiments show that feather CBPs can survive moderate thermal maturation. As predicted by our experiments, analyses of Mesozoic feathers confirm that evidence of feather CBPs can persist through deep time.


Asunto(s)
Plumas , beta-Queratinas , Animales , Queratinas/análisis , Queratinas/genética , Queratinas/metabolismo , beta-Queratinas/análisis , beta-Queratinas/genética , beta-Queratinas/metabolismo , Evolución Biológica , Piel
6.
Proc Biol Sci ; 290(2003): 20231102, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37464754

RESUMEN

Pterosaurs evolved a broad range of body sizes, from small-bodied early forms with wingspans of mostly 1-2 m to the last-surviving giants with sizes of small airplanes. Since all pterosaurs began life as small hatchlings, giant forms must have attained large adult sizes through new growth strategies, which remain largely unknown. Here we assess wing ontogeny and performance in the giant Pteranodon and the smaller-bodied anurognathids Rhamphorhynchus, Pterodactylus and Sinopterus. We show that most smaller-bodied pterosaurs shared negative allometry or isometry in the proximal elements of the fore- and hindlimbs, which were critical elements for powering both flight and terrestrial locomotion, whereas these show positive allometry in Pteranodon. Such divergent growth allometry typically signals different strategies in the precocial-altricial spectrum, suggesting more altricial development in Pteranodon. Using a biophysical model of powered and gliding flight, we test and reject the hypothesis that an aerodynamically superior wing planform could have enabled Pteranodon to attain its larger body size. We therefore propose that a shift from a plesiomorphic precocial state towards a derived state of enhanced parental care may have relaxed the constraints of small body sizes and allowed the evolution of derived flight anatomies critical for the flying giants.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Alas de Animales , Locomoción , Tamaño Corporal , Vuelo Animal
7.
BMC Ecol Evol ; 21(1): 47, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743581

RESUMEN

BACKGROUND: Sexual dimorphism is widespread in insects. The certain specialized structures may be used as weapons in male-male combats or as ornaments to enhance mating opportunities. RESULTS: We report striking swollen first tarsal segments in two families, four genera and six species of scorpionflies from the Middle Jurassic Yanliao Biota of Northeastern China. Swollen tarsal segments are restricted to male specimens and to hind leg tarsi. The geometric morphometric analyses reveal that the degree of swelling within the orthophlebiid species possessing swollen first metatarsal segments is species-specific, which can be used as a diagnostic character for taxonomic and phylogenetic studies. CONCLUSIONS: The new findings indicate that swollen first metatarsal segments are relatively common in the family Orthophlebiidae during the Middle Jurassic. The tarsal swellings are considered to be sexually dimorphic, potentially associated with sexually display by males and/or camouflage of a "nuptial gift" in the mating process.


Asunto(s)
Huesos Metatarsianos , Caracteres Sexuales , Animales , China , Humanos , Masculino , Filogenia , Especificidad de la Especie
10.
Sci Rep ; 10(1): 8970, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488139

RESUMEN

Fossil melanosomes, micron-sized granules rich in melanin in vivo, provide key information for investigations of the original coloration, taxonomy and internal anatomy of fossil vertebrates. Such studies rely, in part, on analysis of the inorganic chemistry of preserved melanosomes and an understanding of melanosome chemical taphonomy. The extent to which the preserved chemistry of fossil melanosomes is biased by biotic and abiotic factors is, however, unknown. Here we report the discovery of hierarchical controls on the inorganic chemistry of melanosomes from fossil vertebrates from nine biotas. The chemical data are dominated by a strong biota-level signal, indicating that the primary taphonomic control is the diagenetic history of the host sediment. This extrinsic control is superimposed by a biological, tissue-level control; tissue-specific chemical variation is most likely to survive in fossils where the inorganic chemistry of preserved melanosomes is distinct from that of the host sediment. Comparative analysis of our data for fossil and modern amphibians reveals that most fossil specimens show tissue-specific melanosome chemistries that differ from those of extant analogues, strongly suggesting alteration of original melanosome chemistry. Collectively, these findings form a predictive tool for the identification of fossil deposits with well-preserved melanosomes amenable to studies of fossil colour and anatomy.


Asunto(s)
Biota , Fósiles , Melanosomas , Espectrometría por Rayos X/métodos , Sincrotrones , Vertebrados/clasificación , Anfibios , Animales , Clasificación , Color , Extinción Biológica , Melanosomas/química , Vertebrados/anatomía & histología
11.
Biol Lett ; 16(4): 20200063, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32289243

RESUMEN

Extant weevils exhibit a remarkable colour palette that ranges from muted monochromatic tones to rainbow-like iridescence, with the most vibrant colours produced by three-dimensional photonic nanostructures housed within cuticular scales. Although the optical properties of these nanostructures are well understood, their evolutionary history is not fully resolved, in part due to a poor knowledge of their fossil record. Here, we report three-dimensional photonic nanostructures preserved in brightly coloured scales of two weevils, belonging to the genus Phyllobius or Polydrusus, from the Pleistocene (16-10 ka) of Switzerland. The scales display vibrant blue, green and yellow hues that resemble those of extant Phyllobius/Polydrusus. Scanning electron microscopy and small-angle X-ray scattering analyses reveal that the subfossil scales possess a single-diamond photonic crystal nanostructure. In extant Phyllobius/Polydrusus, the near-angle-independent blue and green hues function primarily in crypsis. The preservation of far-field, angle-independent structural colours in the Swiss subfossil weevils and their likely function in substrate matching confirm the importance of investigating fossil and subfossil photonic nanostructures to understand the evolutionary origins and diversification of colours and associated behaviours (e.g. crypsis) in insects.


Asunto(s)
Gorgojos , Animales , Color , Fósiles , Microscopía Electrónica de Rastreo , Suiza
12.
Palaeontology ; 63(1): 103-115, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32025055

RESUMEN

Fossils are a key source of data on the evolution of feather structure and function through deep time, but their ability to resolve macroevolutionary questions is compromised by an incomplete understanding of their taphonomy. Critically, the relative preservation potential of two key feather components, melanosomes and keratinous tissue, is not fully resolved. Recent studies suggesting that melanosomes are preferentially preserved conflict with observations that melanosomes preserve in fossil feathers as external moulds in an organic matrix. To date, there is no model to explain the latter mode of melanosome preservation. We addressed these issues by degrading feathers in systematic taphonomic experiments incorporating decay, maturation and oxidation in isolation and combination. Our results reveal that the production of mouldic melanosomes requires interactions with an oxidant and is most likely to occur prior to substantial maturation. This constrains the taphonomic conditions under which melanosomes are likely to be fossilized. Critically, our experiments also confirm that keratinous feather structures have a higher preservation potential than melanosomes under a range of diagenetic conditions, supporting hitherto controversial hypotheses that fossil feathers can retain degraded keratinous structures.

13.
Proc Biol Sci ; 286(1913): 20191649, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31640518

RESUMEN

Screening pigments are essential for vision in animals. Vertebrates use melanins bound in melanosomes as screening pigments, whereas cephalopods are assumed to use ommochromes. Preserved eye melanosomes in the controversial fossil Tullimonstrum (Mazon Creek, IL, USA) are partitioned by size and/or shape into distinct layers. These layers resemble tissue-specific melanosome populations considered unique to the vertebrate eye. Here, we show that extant cephalopod eyes also show tissue-specific size- and/or shape-specific partitioning of melanosomes; these differ from vertebrate melanosomes in the relative abundance of trace metals and in the binding environment of copper. Chemical signatures of melanosomes in the eyes of Tullimonstrum more closely resemble those of modern cephalopods than those of vertebrates, suggesting that an invertebrate affinity for Tullimonstrum is plausible. Melanosome chemistry may thus provide insights into the phylogenetic affinities of enigmatic fossils where melanosome size and/or shape are equivocal.


Asunto(s)
Evolución Biológica , Cefalópodos , Melanosomas , Vertebrados , Animales , Fósiles , Melaninas , Filogenia , Pigmentación , Sincrotrones , Espectroscopía de Absorción de Rayos X
14.
Proc Natl Acad Sci U S A ; 116(36): 17880-17889, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427524

RESUMEN

Recent discoveries of nonintegumentary melanosomes in extant and fossil amphibians offer potential insights into the physiological functions of melanin not directly related to color production, but the phylogenetic distribution and evolutionary history of these internal melanosomes has not been characterized systematically. Here, we present a holistic method to discriminate among melanized tissues by analyzing the anatomical distribution, morphology, and chemistry of melanosomes in various tissues in a phylogenetically broad sample of extant and fossil vertebrates. Our results show that internal melanosomes in all extant vertebrates analyzed have tissue-specific geometries and elemental signatures. Similar distinct populations of preserved melanosomes in phylogenetically diverse vertebrate fossils often map onto specific anatomical features. This approach also reveals the presence of various melanosome-rich internal tissues in fossils, providing a mechanism for the interpretation of the internal anatomy of ancient vertebrates. Collectively, these data indicate that vertebrate melanins share fundamental physiological roles in homeostasis via the scavenging and sequestering of metals and suggest that intimate links between melanin and metal metabolism in vertebrates have deep evolutionary origins.


Asunto(s)
Extinción Biológica , Fósiles , Melanosomas/química , Vertebrados , Animales , Melaninas/química , Melaninas/metabolismo , Melanosomas/ultraestructura , Especificidad de Órganos
15.
Nat Ecol Evol ; 3(1): 24-30, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30568282

RESUMEN

Pterosaurs were the first vertebrates to achieve true flapping flight, but in the absence of living representatives, many questions concerning their biology and lifestyle remain unresolved. Pycnofibres-the integumentary coverings of pterosaurs-are particularly enigmatic: although many reconstructions depict fur-like coverings composed of pycnofibres, their affinities and function are not fully understood. Here, we report the preservation in two anurognathid pterosaur specimens of morphologically diverse pycnofibres that show diagnostic features of feathers, including non-vaned grouped filaments and bilaterally branched filaments, hitherto considered unique to maniraptoran dinosaurs, and preserved melanosomes with diverse geometries. These findings could imply that feathers had deep evolutionary origins in ancestral archosaurs, or that these structures arose independently in pterosaurs. The presence of feather-like structures suggests that anurognathids, and potentially other pterosaurs, possessed a dense filamentous covering that probably functioned in thermoregulation, tactile sensing, signalling and aerodynamics.


Asunto(s)
Dinosaurios/anatomía & histología , Plumas/anatomía & histología , Integumento Común/anatomía & histología , Animales , Fósiles , Melanosomas
16.
J R Soc Interface ; 15(148)2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429263

RESUMEN

Scarab beetles (Coleoptera: Scarabaeidae) can exhibit striking colours produced by pigments and/or nanostructures. The latter include helicoidal (Bouligand) structures that can generate circularly polarized light. These have a cryptic evolutionary history in part because fossil examples are unknown. This suggests either a real biological signal, i.e. that Bouligand structures did not evolve until recently, or a taphonomic signal, i.e. that conditions during the fossilization process were not conducive to their preservation. We address this issue by experimentally degrading circularly polarizing cuticle of modern scarab beetles to test the relative roles of decay, maturation and taxonomy in controlling preservation. The results reveal that Bouligand structures have the potential to survive fossilization, but preservation is controlled by taxonomy and the diagenetic history of specimens. Further, cuticle of specific genus (Chrysina) is particularly decay-prone in alkaline conditions; this may relate to the presence of certain compounds, e.g. uric acid, in the cuticle of these taxa.


Asunto(s)
Estructuras Animales , Escarabajos , Fósiles/ultraestructura , Nanoestructuras , Pigmentación , Estructuras Animales/química , Estructuras Animales/ultraestructura , Animales , Escarabajos/química , Escarabajos/ultraestructura , Nanoestructuras/química , Nanoestructuras/ultraestructura
17.
Nat Commun ; 9(1): 2878, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038333

RESUMEN

The soft tissues of many fossil vertebrates preserve evidence of melanosomes-micron-scale organelles that inform on integumentary coloration and communication strategies. In extant vertebrates, however, melanosomes also occur in internal tissues. Hence, fossil melanosomes may not derive solely from the integument and its appendages. Here, by analyzing extant and fossil frogs, we show that non-integumentary melanosomes have high fossilization potential, vastly outnumber those from the skin, and potentially dominate the melanosome films preserved in some fossil vertebrates. Our decay experiments show that non-integumentary melanosomes usually remain in situ provided that carcasses are undisturbed. Micron-scale study of fossils, however, demonstrates that non-integumentary melanosomes can redistribute through parts of the body if carcasses are disturbed by currents. Collectively, these data indicate that fossil melanosomes do not always relate to integumentary coloration. Integumentary and non-integumentary melanosomes can be discriminated using melanosome geometry and distribution. This is essential to accurate reconstructions of the integumentary colours of fossil vertebrates.


Asunto(s)
Anuros/fisiología , Color , Fósiles , Melanosomas/metabolismo , Xenopus/fisiología , Animales , Evolución Biológica , Plumas , Iguanas/fisiología , Melaninas/química , Pigmentación , Piel/metabolismo , Vertebrados , Xenopus laevis
18.
Nat Commun ; 9(1): 2072, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802246

RESUMEN

Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic.


Asunto(s)
Coevolución Biológica , Aves/fisiología , Dinosaurios/fisiología , Epidermis/fisiología , Plumas/fisiología , Animales , Epidermis/ultraestructura , Plumas/ultraestructura , Fósiles , Microscopía Electrónica de Rastreo , Filogenia
19.
Sci Adv ; 4(4): e1700988, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29651455

RESUMEN

Lepidopteran scales exhibit remarkably complex ultrastructures, many of which produce structural colors that are the basis for diverse communication strategies. Little is known, however, about the early evolution of lepidopteran scales and their photonic structures. We report scale architectures from Jurassic Lepidoptera from the United Kingdom, Germany, Kazakhstan, and China and from Tarachoptera (a stem group of Amphiesmenoptera) from mid-Cretaceous Burmese amber. The Jurassic lepidopterans exhibit a type 1 bilayer scale vestiture: an upper layer of large fused cover scales and a lower layer of small fused ground scales. This scale arrangement, plus preserved herringbone ornamentation on the cover scale surface, is almost identical to those of some extant Micropterigidae. Critically, the fossil scale ultrastructures have periodicities measuring from 140 to 2000 nm and are therefore capable of scattering visible light, providing the earliest evidence of structural colors in the insect fossil record. Optical modeling confirms that diffraction-related scattering mechanisms dominate the photonic properties of the fossil cover scales, which would have displayed broadband metallic hues as in numerous extant Micropterigidae. The fossil tarachopteran scales exhibit a unique suite of characteristics, including small size, elongate-spatulate shape, ridged ornamentation, and irregular arrangement, providing novel insight into the early evolution of lepidopteran scales. Combined, our results provide the earliest evidence for structural coloration in fossil lepidopterans and support the hypothesis that fused wing scales and the type 1 bilayer covering are groundplan features of the group. Wing scales likely had deep origins in earlier amphiesmenopteran lineages before the appearance of the Lepidoptera.


Asunto(s)
Evolución Biológica , Fósiles , Mariposas Nocturnas/anatomía & histología , Animales , Alas de Animales/anatomía & histología , Alas de Animales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...