Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 82(21): 3950-3961, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36273492

RESUMEN

Over one million cases of gastric cancer are diagnosed each year globally, and the metastatic disease continues to have a poor prognosis. A significant proportion of gastric tumors have defects in the DNA damage response pathway, creating therapeutic opportunities through synthetic lethal approaches. Several small-molecule inhibitors of ATR, a key regulator of the DNA damage response, are now in clinical development as targeted agents for gastric cancer. Here, we performed a large-scale CRISPR interference screen to discover genetic determinants of response and resistance to ATR inhibitors (ATRi) in gastric cancer cells. Among the top hits identified as mediators of ATRi response were UPF2 and other components of the nonsense-mediated decay (NMD) pathway. Loss of UPF2 caused ATRi resistance across multiple gastric cancer cell lines. Global proteomic, phosphoproteomic, and transcriptional profiling experiments revealed that cell-cycle progression and DNA damage responses were altered in UPF2-mutant cells. Further studies demonstrated that UPF2-depleted cells failed to accumulate in G1 following treatment with ATRi. UPF2 loss also reduced transcription-replication collisions, which has previously been associated with ATRi response, thereby suggesting a possible mechanism of resistance. Our results uncover a novel role for NMD factors in modulating response to ATRi in gastric cancer, highlighting a previously unknown mechanism of resistance that may inform the clinical use of these drugs. SIGNIFICANCE: Loss of NMD proteins promotes resistance to ATR inhibitors in gastric cancer cells, which may provide a combination of therapeutic targets and biomarkers to improve the clinical utility of these drugs.


Asunto(s)
Neoplasias Gástricas , Humanos , Proteómica , Inhibidores de Proteínas Quinasas , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Unión al ARN , Proteínas de la Ataxia Telangiectasia Mutada
2.
Elife ; 102021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34812139

RESUMEN

Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.


Lots of people have small dark patches on their skin known as moles. Most moles form when individual cells known as melanocytes in the skin acquire a specific genetic mutation in a gene called BRAF. This mutation causes the cells to divide rapidly to form the mole. After a while, most moles stop growing and remain harmless for the rest of a person's life. Melanoma is a type of skin cancer that develops from damaged melanocytes. The same mutation in BRAF that is found in moles is also present in half of all cases of melanoma. Unlike in moles, the melanoma-causing mutation makes the melanocytes divide rapidly to form a tumor that keeps on growing indefinitely. It remains unclear why the same genetic mutation in the BRAF gene has such different consequences in moles and melanomas. To address this question, McNeal et al. used genetic approaches to study melanocytes from moles and melanomas. The experiments identified some molecules known as microRNAs that are present at higher levels in moles than in melanomas. Increasing the levels of two of these microRNAs in melanocytes from human skin stopped the cells from growing and dividing by inhibiting a gene called AURKB. This suggested that these microRNAs are responsible for halting the growth of moles. Introducing the mutated form of BRAF into melanocytes also stopped cells from growing and dividing by inhibiting AURKB. However, changing the environment surrounding the cells reversed this effect and allowed the melanocytes to resume dividing. In this way the mutated form of BRAF acts like a switch that allows melanocytes in skin cancers to start growing again under certain conditions. Further experiments found that a drug called barasertib is able to inhibit the growth of melanoma cells with the mutant form of BRAF. Future work will investigate whether it is possible to use this drug and other tools to stop skin cancer tumors from growing, and possibly even prevent skin tumors from forming in the first place.


Asunto(s)
Aurora Quinasa B/genética , Melanocitos/fisiología , MicroARNs/metabolismo , Mitosis/genética , Proteínas Proto-Oncogénicas B-raf/genética , Aurora Quinasa B/metabolismo , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal
4.
Nature ; 586(7830): 600-605, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33029006

RESUMEN

Every cell in the human body has a unique set of somatic mutations, but it remains difficult to comprehensively genotype an individual cell1. Here we describe ways to overcome this obstacle in the context of normal human skin, thus offering a glimpse into the genomic landscapes of individual melanocytes from human skin. As expected, sun-shielded melanocytes had fewer mutations than sun-exposed melanocytes. However, melanocytes from chronically sun-exposed skin (for example, the face) had a lower mutation burden than melanocytes from intermittently sun-exposed skin (for example, the back). Melanocytes located adjacent to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, implying that the mutation burden of normal skin can be used to measure cumulative sun damage and risk of skin cancer. Moreover, melanocytes from healthy skin commonly contained pathogenic mutations, although these mutations tended to be weakly oncogenic, probably explaining why they did not give rise to discernible lesions. Phylogenetic analyses identified groups of related melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells that are invisible to the naked eye. Overall, our results uncover the genomic landscapes of individual melanocytes, providing key insights into the causes and origins of melanoma.


Asunto(s)
Genoma Humano/genética , Genómica , Salud , Melanocitos/citología , Melanoma/genética , Análisis de la Célula Individual , Piel/citología , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/patología , Mutación , Piel/patología , Flujo de Trabajo
5.
Cancer Cell ; 34(1): 56-68.e9, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990501

RESUMEN

Loss of the CDKN2A tumor suppressor is associated with melanoma metastasis, but the mechanisms connecting the phenomena are unknown. Using CRISPR-Cas9 to engineer a cellular model of melanoma initiation from primary human melanocytes, we discovered that a lineage-restricted transcription factor, BRN2, is downstream of CDKN2A and directly regulated by E2F1. In a cohort of melanocytic tumors that capture distinct progression stages, we observed that CDKN2A loss coincides with both the onset of invasive behavior and increased BRN2 expression. Loss of the CDKN2A protein product p16INK4A permitted metastatic dissemination of human melanoma lines in mice, a phenotype rescued by inhibition of BRN2. These results demonstrate a mechanism by which CDKN2A suppresses the initiation of melanoma invasion through inhibition of BRN2.


Asunto(s)
Movimiento Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteínas de Homeodominio/genética , Pérdida de Heterocigocidad , Neoplasias Pulmonares/genética , Melanocitos/metabolismo , Melanoma/genética , Factores del Dominio POU/genética , Neoplasias Cutáneas/genética , Activación Transcripcional , Animales , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Melanocitos/patología , Melanoma/metabolismo , Melanoma/secundario , Ratones Endogámicos NOD , Invasividad Neoplásica , Factores del Dominio POU/metabolismo , Mutación Puntual , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
6.
Cell Rep ; 19(2): 413-424, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28402862

RESUMEN

Drug combinations are synergistic when their combined efficacy exceeds the sum of the individual actions, but they rarely include ineffective drugs that become effective only in combination. We identified several "enabling pairs" of neutralizing and non-neutralizing anti-ebolavirus monoclonal antibodies, whose combination exhibited new functional profiles, including transforming a non-neutralizing antibody to a neutralizer. Sub-neutralizing concentrations of antibodies 2G4 or m8C4 enabled non-neutralizing antibody FVM09 (IC50 >1 µM) to exhibit potent neutralization (IC50 1-10 nM). While FVM09 or m8C4 alone failed to protect Ebola-virus-infected mice, a combination of the two antibodies provided 100% protection. Furthermore, non-neutralizers FVM09 and FVM02 exponentially enhanced the potency of two neutralizing antibodies against both Ebola and Sudan viruses. We identified a hotspot for the binding of these enabling antibody pairs near the interface of the glycan cap and GP2. Enabling cooperativity may be an underappreciated phenomenon for viruses, with implications for the design and development of immunotherapeutics and vaccines.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Sinergismo Farmacológico , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/terapia , Fiebre Hemorrágica Ebola/virología , Humanos , Ratones
8.
Cell Rep ; 14(10): 2313-24, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26947070

RESUMEN

In the absence of low-level ER-to-mitochondrial Ca(2+) transfer, ATP levels fall, and AMPK-dependent, mTOR-independent autophagy is induced as an essential survival mechanism in many cell types. Here, we demonstrate that tumorigenic cancer cell lines, transformed primary human fibroblasts, and tumors in vivo respond similarly but that autophagy is insufficient for survival, and cancer cells die while their normal counterparts are spared. Cancer cell death is due to compromised bioenergetics that can be rescued with metabolic substrates or nucleotides and caused by necrosis associated with mitotic catastrophe during their proliferation. Our findings reveal an unexpected dependency on constitutive Ca(2+) transfer to mitochondria for viability of tumorigenic cells and suggest that mitochondrial Ca(2+) addiction is a feature of cancer cells.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilcisteína/farmacología , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Compuestos Macrocíclicos/farmacología , Microscopía por Video , Oxazoles/farmacología , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
9.
Cancer Discov ; 5(10): 1072-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26183406

RESUMEN

UNLABELLED: Deletion of the entire CDKN2B-CDKN2A gene cluster is among the most common genetic events in cancer. The tumor-promoting effects are generally attributed to loss of CDKN2A-encoded p16 and p14ARF tumor suppressors. The degree to which the associated CDKN2B-encoded p15 loss contributes to human tumorigenesis is unclear. Here, we show that CDKN2B is highly upregulated in benign melanocytic nevi, contributes to maintaining nevus melanocytes in a growth-arrested premalignant state, and is commonly lost in melanoma. Using primary melanocytes isolated directly from freshly excised human nevi naturally expressing the common BRAF(V600E)-activating mutation, nevi progressing to melanoma, and normal melanocytes engineered to inducibly express BRAF(V600E), we show that BRAF activation results in reversible, TGFß-dependent, p15 induction that halts proliferation. Furthermore, we engineer human skin grafts containing nevus-derived melanocytes to establish a new, architecturally faithful, in vivo melanoma model, and demonstrate that p15 loss promotes the transition from benign nevus to melanoma. SIGNIFICANCE: Although BRAF(V600E) mutations cause melanocytes to initially proliferate into benign moles, mechanisms responsible for their eventual growth arrest are unknown. Using melanocytes from human moles, we show that BRAF activation leads to a CDKN2B induction that is critical for restraining BRAF oncogenic effects, and when lost, contributes to melanoma.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Melanoma/genética , Melanoma/patología , Nevo/genética , Nevo/patología , Animales , Puntos de Control del Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Cromatina/genética , Cromatina/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Inmunohistoquímica , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/metabolismo , Ratones , Mutación , Nevo/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Activación Transcripcional , Factor de Crecimiento Transformador beta/metabolismo
10.
J Invest Dermatol ; 135(9): 2258-2265, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25848980

RESUMEN

IQ motif-containing GTPase-activating protein (IQGAP) scaffolding proteins regulate many essential cellular processes including growth factor receptor signaling, cytoskeletal rearrangement, adhesion, and proliferation and are highly expressed in many cancers. Using genetically engineered human skin tissue in vivo, we demonstrate that diminished, sub-physiologic expression of IQGAP1 or IQGAP3 is sufficient to maintain normal epidermal homeostasis, whereas significantly higher levels are required to support tumorigenesis. To target this tumor-specific IQGAP requirement in vivo, we engineered epidermal keratinocytes to express individual IQGAP protein domains designed to compete with endogenous IQGAPs for effector protein binding. Expression of the IQGAP1-IQ motif decoy domain in epidermal tissue in vivo inhibits oncogenic Ras-driven mitogen-activated protein kinase signaling and antagonizes tumorigenesis, without disrupting normal epidermal proliferation or differentiation. These findings define essential non-redundant roles for IQGAP1 and IQGAP3 in the epidermis and demonstrate the potential of IQGAP antagonism for cancer therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Epidermis/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Cutáneas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Biopsia con Aguja , Western Blotting , Carcinoma de Células Escamosas/patología , Proliferación Celular , Células Cultivadas , Progresión de la Enfermedad , Epidermis/patología , Proteínas Activadoras de GTPasa/genética , Homeostasis/fisiología , Humanos , Inmunohistoquímica , Queratinocitos/citología , Queratinocitos/metabolismo , Estructura Terciaria de Proteína , Valores de Referencia , Neoplasias Cutáneas/patología , Ingeniería de Tejidos , Proteínas Activadoras de ras GTPasa/genética
11.
Cell Cycle ; 13(10): 1551-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24626198

RESUMEN

Fibroblast growth factor receptor 3 (FGFR3) activating mutations are drivers of malignancy in several human tissues, including bladder, lung, cervix, and blood. However, in skin, these mutations are associated predominantly with benign, common epidermal growths called seborrheic keratoses (SKs). How epidermis resists FGFR3 mediated transformation is unclear, but previous studies have suggested that FGFR3 activation in skin keratinocytes may serve a tumor-suppressive role by driving differentiation and antagonizing Ras signaling. To define the role of FGFR3 in human normal and neoplastic epidermis, and to directly test the hypothesis that FGFR3 antagonizes Ras, we engineered human skin grafts in vivo with mutant active FGFR3 or shRNA FGFR3 knockdown. We show that FGFR3 active mutants drive mild hyperproliferation, but are insufficient to support benign or malignant tumorigenesis, either alone, or in combination with G 1-S checkpoint release. This suggests that additional cell-intrinsic or stromal cues are required for formation of benign SKs with FGFR3 mutations. Further, FGFR3 activation does not alter the growth kinetics or differentiation status of engineered human epidermal SCCs driven by Ras, and FGFR3 protein itself is dispensable for Ras-driven SCC. To extend these findings to patients, we examined a uniquely informative human tumor in which SCC developed in continuity with a SK, raising the hypothesis that one of the tumors evolved from the other. However, mutational analysis from each tumor indicates that the overlapping SK and SCC evolved independently and supports our conclusion that FGFR3 activation is insufficient to drive SCC.


Asunto(s)
Carcinoma de Células Escamosas/patología , Epidermis/patología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Cutáneas/patología , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Células Cultivadas , Aberraciones Cromosómicas , Epidermis/metabolismo , Xenoinjertos , Humanos , Hiperplasia , Recién Nacido , Queratinocitos/metabolismo , Queratosis Seborreica/genética , Queratosis Seborreica/metabolismo , Queratosis Seborreica/patología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Oncogénica p21(ras)/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA