Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 119(24): 242701, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29286739

RESUMEN

We have performed a direct measurement of the ^{19}Ne(p,γ)^{20}Na reaction in inverse kinematics using a beam of radioactive ^{19}Ne. The key astrophysical resonance in the ^{19}Ne+p system has been definitely measured for the first time at E_{c.m.}=456_{-2}^{+5} keV with an associated strength of 17_{-5}^{+7} meV. The present results are in agreement with resonance strength upper limits set by previous direct measurements, as well as resonance energies inferred from precision (^{3}He, t) charge exchange reactions. However, both the energy and strength of the 456 keV resonance disagree with a recent indirect study of the ^{19}Ne(d, n)^{20}Na reaction. In particular, the new ^{19}Ne(p,γ)^{20}Na reaction rate is found to be factors of ∼8 and ∼5 lower than the most recent evaluation over the temperature range of oxygen-neon novae and astrophysical x-ray bursts, respectively. Nevertheless, we find that the ^{19}Ne(p,γ)^{20}Na reaction is likely to proceed fast enough to significantly reduce the flux of ^{19}F in nova ejecta and does not create a bottleneck in the breakout from the hot CNO cycles into the rp process.

2.
Phys Rev Lett ; 116(10): 102502, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-27015475

RESUMEN

The thermonuclear ^{30}P(p,γ)^{31}S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key ^{31}S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the ß decay of ^{31}Cl, we have observed the ß-delayed γ decay of a ^{31}S state at E_{x}=6390.2(7) keV, with a ^{30}P(p,γ)^{31}S resonance energy of E_{r}=259.3(8) keV, in the middle of the ^{30}P(p,γ)^{31}S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E_{x}=6279.0(6) keV, giving it an unambiguous spin and parity of 3/2^{+} and making it an important l=0 resonance for proton capture on ^{30}P.

3.
Phys Rev Lett ; 114(19): 192502, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024166

RESUMEN

The first conclusive evidence of a dipole resonance in ^{11}Li having isoscalar character observed from inelastic scattering with a novel solid deuteron target is reported. The experiment was performed at the newly commissioned IRIS facility at TRIUMF. The results show a resonance peak at an excitation energy of 1.03±0.03 MeV with a width of 0.51±0.11 MeV (FWHM). The angular distribution is consistent with a dipole excitation in the distorted-wave Born approximation framework. The observed resonance energy together with shell model calculations show the first signature that the monopole tensor interaction is important in ^{11}Li. The first ab initio calculations in the coupled cluster framework are also presented.

4.
Phys Rev Lett ; 111(23): 232503, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476263

RESUMEN

Classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ)26Si reaction. Using the ß decay of 26P to populate the key J(π)=3(+) resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be E(r)=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)(-10)(+11)(lit.) meV, respectively, where the last uncertainties are from adopted literature data. We use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...