Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(9): 113042, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37651233

RESUMEN

Amplified lysosome activity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) orchestrated by oncogenic KRAS that mediates tumor growth and metastasis, though the mechanisms underlying this phenomenon remain unclear. Using comparative proteomics, we found that oncogenic KRAS significantly enriches levels of the guanine nucleotide exchange factor (GEF) dedicator of cytokinesis 8 (DOCK8) on lysosomes. Surprisingly, DOCK8 is aberrantly expressed in a subset of PDAC, where it promotes cell invasion in vitro and in vivo. DOCK8 associates with lysosomes and regulates lysosomal morphology and motility, with loss of DOCK8 leading to increased lysosome size. DOCK8 promotes actin polymerization at the surface of lysosomes while also increasing the proteolytic activity of the lysosomal protease cathepsin B. Critically, depletion of DOCK8 significantly reduces cathepsin-dependent extracellular matrix degradation and impairs the invasive capacity of PDAC cells. These findings implicate ectopic expression of DOCK8 as a key driver of KRAS-driven lysosomal regulation and invasion in pancreatic cancer cells.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Citocinesis , Expresión Génica Ectópica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Carcinoma Ductal Pancreático/patología , Lisosomas/metabolismo
2.
J Biol Chem ; 299(4): 103071, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36849008

RESUMEN

Lipid droplets (LDs) are fat-storing organelles enclosed by a phospholipid monolayer, which harbors membrane-associated proteins that regulate distinct LD functions. LD proteins are degraded by the ubiquitin-proteasome system (UPS) and/or by lysosomes. Because chronic ethanol (EtOH) consumption diminishes the hepatic functions of the UPS and lysosomes, we hypothesized that continuous EtOH consumption slows the breakdown of lipogenic LD proteins targeted for degradation, thereby causing LD accumulation. Here, we report that LDs from livers of EtOH-fed rats exhibited higher levels of polyubiquitylated-proteins, linked at either lysine 48 (directed to proteasome) or lysine 63 (directed to lysosomes) than LDs from pair-fed control rats. MS proteomics of LD proteins, immunoprecipitated with UB remnant motif antibody (K-ε-GG), identified 75 potential UB proteins, of which 20 were altered by chronic EtOH administration. Among these, hydroxysteroid 17ß-dehydrogenase 11 (HSD17ß11) was prominent. Immunoblot analyses of LD fractions revealed that EtOH administration enriched HSD17ß11 localization to LDs. When we overexpressed HSD17ß11 in EtOH-metabolizing VA-13 cells, the steroid dehydrogenase 11 became principally localized to LDs, resulting in elevated cellular triglycerides (TGs). Ethanol exposure augmented cellular TG, while HSD17ß11 siRNA decreased both control and EtOH-induced TG accumulation. Remarkably, HSD17ß11 overexpression lowered the LD localization of adipose triglyceride lipase. EtOH exposure further reduced this localization. Reactivation of proteasome activity in VA-13 cells blocked the EtOH-induced rises in both HSD17ß11 and TGs. Our findings indicate that EtOH exposure blocks HSD17ß11 degradation by inhibiting the UPS, thereby stabilizing HSD17ß11 on LD membranes, to prevent lipolysis by adipose triglyceride lipase and promote cellular LD accumulation.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Etanol , Hígado Graso , Animales , Ratas , Etanol/farmacología , Etanol/metabolismo , Hígado Graso/metabolismo , Lipasa/genética , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/metabolismo
3.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35260889

RESUMEN

Lipophagy is a central cellular process for providing the cell with a readily utilized, high energy source of neutral lipids. Since its discovery over a decade ago, we are just starting to understand the molecular components that drive lipophagy, how it is activated in response to nutrient availability, and its potential as a therapeutic target in disease. In this Cell Science at a Glance article and the accompanying poster, we first provide a brief overview of the different structural and enzymatic proteins that comprise the lipid droplet (LD) proteome and reside within the limiting phospholipid monolayer of this complex organelle. We then highlight key players in the catabolic breakdown of LDs during the functionally linked lipolysis and lipophagy processes. Finally, we discuss what is currently known about macro- and micro-lipophagy based on findings in yeast, mammalian and other model systems, and how impairment of these important functions can lead to disease states.


Asunto(s)
Gotas Lipídicas , Lipólisis , Animales , Autofagia/fisiología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Mamíferos/metabolismo , Fosfolípidos/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Hepatol Commun ; 5(7): 1238-1251, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34278172

RESUMEN

Currently, the hepatocellular trafficking pathways that are used by the hepatitis B virus (HBV) during viral infection and shedding are poorly defined. It is known that the HBV uses late endosomal and multivesicular body (MVB) compartments for assembly and release. The intraluminal vesicles (ILVs) generated within MVBs have also been implicated in the late synthesis stages of a variety of pathogenic viruses. We recently observed that the HBV within infected hepatocytes appears to associate with the tetraspanin protein CD63, known to be a prominent and essential component of ILVs. Immunofluorescence microscopy of HBV-expressing cells showed that CD63 colocalized with HBV proteins (large hepatitis B surface antigens [LHBs] and hepatitis B core) and labeled an exceptionally large number of secreted extracellular vesicles of uniform size. Small interfering RNA (siRNA)-mediated depletion of CD63 induced a substantial accumulation of intracellular LHBs protein but did not alter the levels of either intracellular or extracellular HBV DNA, nor pregenomic RNA. Consistent with these findings, we found that markedly less LHBs protein was associated with the released HBV particles from CD63 siRNA-treated cells. Importantly, the HBV viral particles that were shed from CD63-depleted cells were substantially less infective than those collected from control cells with normal CD63 levels. Conclusion: These findings implicate the tetraspanin protein CD63 as a marker and an important component in the formation and release of infectious HBV particles.

5.
Sci Adv ; 7(25)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34144977

RESUMEN

53BP1 activates nonhomologous end joining (NHEJ) and inhibits homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Dissociation of 53BP1 from DSBs and consequent activation of HR, a less error-prone pathway than NHEJ, helps maintain genome integrity during DNA replication; however, the underlying mechanisms are not fully understood. Here, we demonstrate that E3 ubiquitin ligase SPOP promotes HR during S phase of the cell cycle by excluding 53BP1 from DSBs. In response to DNA damage, ATM kinase-catalyzed phosphorylation of SPOP causes a conformational change in SPOP, revealed by x-ray crystal structures, that stabilizes its interaction with 53BP1. 53BP1-bound SPOP induces polyubiquitination of 53BP1, eliciting 53BP1 extraction from chromatin by a valosin-containing protein/p97 segregase complex. Our work shows that SPOP facilitates HR repair over NHEJ during DNA replication by contributing to 53BP1 removal from chromatin. Cancer-derived SPOP mutations block SPOP interaction with 53BP1, inducing HR defects and chromosomal instability.


Asunto(s)
Cromatina , Roturas del ADN de Doble Cadena , Cromatina/genética , Reparación del ADN por Unión de Extremidades , Replicación del ADN , Proteínas Nucleares , Reparación del ADN por Recombinación , Proteínas Represoras , Proteína 1 de Unión al Supresor Tumoral P53
6.
Mol Biol Cell ; 32(15): 1393-1407, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34010028

RESUMEN

The α-actinin family of actin cross-linking proteins have been implicated in driving tumor cell metastasis through regulation of the actin cytoskeleton; however, there has been little investigation into whether these proteins can influence tumor cell growth. We demonstrate that α-actinin 1 and 4 are essential for nutrient uptake through the process of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC) cells, and inhibition of these proteins decreases tumor cell survival in the presence of extracellular protein. The α-actinin proteins play essential roles throughout the macropinocytic process, where α-actinin 4 stabilizes the actin cytoskeleton on the plasma membrane to drive membrane ruffling and macropinosome internalization and α-actinin 1 localizes to actin tails on macropinosomes to facilitate trafficking to the lysosome for degradation. In addition to tumor cell growth, we also observe that the α-actinin proteins can influence uptake of chemotherapeutics and extracellular matrix proteins through macropinocytosis, suggesting that the α-actinin proteins can regulate multiple tumor cell properties through this endocytic process. In summary, these data demonstrate a critical role for the α-actinin isoforms in tumor cell macropinocytosis, thereby affecting the growth and invasive potential of PDAC tumors.


Asunto(s)
Actinina/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Pinocitosis , Citoesqueleto de Actina/metabolismo , Carcinoma Ductal Pancreático/fisiopatología , Línea Celular Tumoral , Endosomas , Humanos , Neoplasias Pancreáticas/fisiopatología
7.
PLoS One ; 16(3): e0248111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33740019

RESUMEN

The process by which tumor cells mechanically invade through the surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. Matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) degradation plays an important role in this invasive process. Defining the contribution and interaction between these MMPs during invasion remains a key interest in the development of targeted anti-metastatic therapies. In this study we have utilized multiple different stromal fibroblasts and tumor cells to define the relative contributions between cancer cells and stromal cells during MMP-dependent matrix remodeling and pancreatic (PDAC) tumor cell invasion. We find that tumor cells co-cultured with the conditioned medium from stromal fibroblasts exhibited a substantial increase in invadopodial-based matrix degradation and transwell invasion. This increase is dependent on pro-MMP2 expressed and secreted by stromal fibroblasts. Further, the pro-MMP2 from the stromal fibroblasts is activated by MT1-MMP expressed on the tumor cells. Depletion of MT1-MMP, the known activator of MMP2, in tumor cells largely blocked matrix remodeling, even in the presence of stromal cell medium. In summary, these findings implicate an important interplay between MT1-MMP from tumor cells and MMP2 from fibroblasts as a key component for ECM remodeling and invasion.


Asunto(s)
Matriz Extracelular/patología , Metaloproteinasas de la Matriz/metabolismo , Neoplasias Pancreáticas/patología , Células del Estroma/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Invasividad Neoplásica/patología , Neoplasias Pancreáticas/metabolismo , Células del Estroma/metabolismo
8.
Front Physiol ; 12: 625352, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746771

RESUMEN

Background: Fatty liver, a major health problem worldwide, is the earliest pathological change in the progression of alcohol-associated (AFL) and non-alcoholic fatty liver disease (NAFL). Though the causes of AFL and NAFL differ, both share similar histological and some common pathophysiological characteristics. In this study, we sought to examine mechanisms responsible for lipid dynamics in liver and adipose tissue in the setting of AFL and NAFL in response to 48 h of fasting. Methods: Male rats were fed Lieber-DeCarli liquid control or alcohol-containing diet (AFL model), chow or high-fat pellet diet (NAFL model). After 6-8 weeks of feeding, half of the rats from each group were fasted for 48 h while the other half remained on their respective diets. Following sacrifice, blood, adipose, and the liver were collected for analysis. Results: Though rats fed AFL and NAFL diets both showed fatty liver, the physiological mechanisms involved in the development of each was different. Here, we show that increased hepatic de novo fatty acid synthesis, increased uptake of adipose-derived free fatty acids, and impaired triglyceride breakdown contribute to the development of AFL. In the case of NAFL, however, increased dietary fatty acid uptake is the major contributor to hepatic steatosis. Likewise, the response to starvation in the two fatty liver disease models also varied. While there was a decrease in hepatic steatosis after fasting in ethanol-fed rats, the control, chow and high-fat diet-fed rats showed higher levels of hepatic steatosis than pair-fed counterparts. This diverse response was a result of increased adipose lipolysis in all experimental groups except fasted ethanol-fed rats. Conclusion: Even though AFL and NAFL are nearly histologically indistinguishable, the physiological mechanisms that cause hepatic fat accumulation are different as are their responses to starvation.

9.
Hepatology ; 73 Suppl 1: 1-3, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33616970
10.
J Lipid Res ; 62: 100049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617872

RESUMEN

Lipid droplets (LDs) are composed of neutral lipids enclosed in a phospholipid monolayer, which harbors membrane-associated proteins that regulate LD functions. Despite the crucial role of LDs in lipid metabolism, remodeling of LD protein composition in disease contexts, such as steatosis, remains poorly understood. We hypothesized that chronic ethanol consumption, subsequent abstinence from ethanol, or fasting differentially affects the LD membrane proteome content and that these changes influence how LDs interact with other intracellular organelles. Here, male Wistar rats were pair-fed liquid control or ethanol diets for 6 weeks, and then, randomly chosen animals from both groups were either refed a control diet for 7 days or fasted for 48 h before euthanizing. From all groups, LD membrane proteins from purified liver LDs were analyzed immunochemically and by MS proteomics. Liver LD numbers and sizes were greater in ethanol-fed rats than in pair-fed control, 7-day refed, or fasted rats. Compared with control rats, ethanol feeding markedly altered the LD membrane proteome, enriching LD structural perilipins and proteins involved in lipid biosynthesis, while lowering LD lipase levels. Ethanol feeding also lowered LD-associated mitochondrial and lysosomal proteins. In 7-day refed (i.e., ethanol-abstained) or fasted-ethanol-fed rats, we detected distinct remodeling of the LD proteome, as judged by lower levels of lipid biosynthetic proteins, and enhanced LD interaction with mitochondria and lysosomes. Our study reveals evidence of significant remodeling of the LD membrane proteome that regulates ethanol-induced steatosis, its resolution after withdrawal and abstinence, and changes in LD interactions with other intracellular organelles.


Asunto(s)
Gotas Lipídicas
11.
Proc Natl Acad Sci U S A ; 117(51): 32443-32452, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288726

RESUMEN

Hepatocytes metabolize energy-rich cytoplasmic lipid droplets (LDs) in the lysosome-directed process of autophagy. An organelle-selective form of this process (macrolipophagy) results in the engulfment of LDs within double-membrane delimited structures (autophagosomes) before lysosomal fusion. Whether this is an exclusive autophagic mechanism used by hepatocytes to catabolize LDs is unclear. It is also unknown whether lysosomes alone might be sufficient to mediate LD turnover in the absence of an autophagosomal intermediate. We performed live-cell microscopy of hepatocytes to monitor the dynamic interactions between lysosomes and LDs in real-time. We additionally used a fluorescent variant of the LD-specific protein (PLIN2) that exhibits altered fluorescence in response to LD interactions with the lysosome. We find that mammalian lysosomes and LDs undergo interactions during which proteins and lipids can be transferred from LDs directly into lysosomes. Electron microscopy (EM) of primary hepatocytes or hepatocyte-derived cell lines supports the existence of these interactions. It reveals a dramatic process whereby the lipid contents of the LD can be "extruded" directly into the lysosomal lumen under nutrient-limited conditions. Significantly, these interactions are not affected by perturbations to crucial components of the canonical macroautophagy machinery and can occur in the absence of double-membrane lipoautophagosomes. These findings implicate the existence of an autophagic mechanism used by mammalian cells for the direct transfer of LD components into the lysosome for breakdown. This process further emphasizes the critical role of lysosomes in hepatic LD catabolism and provides insights into the mechanisms underlying lipid homeostasis in the liver.


Asunto(s)
Autofagia/fisiología , Hepatocitos/metabolismo , Gotas Lipídicas/metabolismo , Lisosomas/metabolismo , Animales , Autofagosomas/metabolismo , Línea Celular , Metabolismo de los Lípidos , Ratones , Microscopía Confocal , Transporte de Proteínas , Ratas Sprague-Dawley
12.
J Cell Sci ; 133(11)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32295849

RESUMEN

Epithelial cells, such as liver-resident hepatocytes, rely heavily on the Rab family of small GTPases to perform membrane trafficking events that dictate cell physiology and metabolism. Not surprisingly, disruption of several Rab proteins can manifest in metabolic diseases or cancer. Rab32 is expressed in many secretory epithelial cells but its role in cellular metabolism is virtually unknown. In this study, we find that Rab32 associates with lysosomes and regulates proliferation and cell size of Hep3B hepatoma and HeLa cells. Specifically, we identify that Rab32 supports the mechanistic target of rapamycin complex 1 (mTORC1) signaling under basal and amino acid-stimulated conditions. Consistent with inhibited mTORC1, an increase in nuclear TFEB localization and lysosome biogenesis is also observed in Rab32-depleted cells. Finally, we find that Rab32 interacts with mTOR kinase, and that loss of Rab32 reduces the association of mTOR and mTORC1 pathway proteins with lysosomes, suggesting that Rab32 regulates lysosomal mTOR trafficking. In summary, these findings suggest that Rab32 functions as a novel regulator of cellular metabolism through supporting mTORC1 signaling.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Células HeLa , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rab
13.
Nat Commun ; 11(1): 1048, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32102993

RESUMEN

The membrane deforming dynamin family members MxA and MxB are large GTPases that convey resistance to a variety of infectious viruses. During viral infection, Mx proteins are known to show markedly increased expression via an interferon-responsive promoter to associate with nuclear pores. In this study we report that MxB is an inner mitochondrial membrane GTPase that plays an important role in the morphology and function of this organelle. Expression of mutant MxB or siRNA knockdown of MxB leads to fragmented mitochondria with disrupted inner membranes that are unable to maintain a proton gradient, while expelling their nucleoid-based genome into the cytoplasm. These findings implicate a dynamin family member in mitochondrial-based changes frequently observed during an interferon-based, anti-viral response.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Carcinoma Hepatocelular , Línea Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , Células HeLa , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas , Proteínas de Resistencia a Mixovirus/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
14.
Mol Biol Cell ; 31(6): 439-451, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31967944

RESUMEN

The large GTPase Dynamin 2 (Dyn2) is known to increase the invasiveness of pancreatic cancer tumor cells, but the mechanisms by which Dyn2 regulates changes in the actin cytoskeleton to drive cell migration are still unclear. Here we report that a direct interaction between Dyn2 and the actin-bundling protein alpha-actinin (α-actinin) 4 is critical for tumor cell migration and remodeling of the extracellular matrix in pancreatic ductal adenocarcinoma (PDAC) cells. The direct interaction is mediated through the C-terminal tails of both Dyn2 and α-actinin 4, and these proteins interact at invasive structures at the plasma membrane. While Dyn2 binds directly to both α-actinin 1 and α-actinin 4, only the interaction with α-actinin 4 is required to promote tumor cell invasion. Specific disruption of the Dyn2-α-actinin 4 interaction blocks the ability of PDAC cells to migrate in either two dimensions or invade through extracellular matrix as a result of impaired invadopodia stability. Analysis of human PDAC tumor tissue additionally reveals that elevated α-actinin 4 or Dyn2 expression are predictive of poor survival. Overall, these data demonstrate that Dyn2 regulates cytoskeletal dynamics, in part, by interacting with the actin-binding protein α-actinin 4 during tumor cell invasion.


Asunto(s)
Actinina/metabolismo , Dinamina II/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular , Humanos , Invasividad Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Unión Proteica , Seudópodos/metabolismo , Neoplasias Pancreáticas
15.
Contact (Thousand Oaks) ; 3: 1-13, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34113777

RESUMEN

Lipid droplets (LDs) are dynamic fat-storage organelles that interact readily with numerous cellular structures and organelles. A prominent LD contact site is with degradative vesicles such as autophagosomes, lysosomes, autolysosomes, and late endosomes. These contacts support lipid catabolism through the selective autophagy of LDs (i.e., lipophagy) or the recruitment of cytosolic lipases to the LD surface (i.e., lipolysis). However, LD-autophagosome contacts serve additional functions beyond lipid catabolism, including the supply of lipids for autophagosome biogenesis. In this review, we discuss the molecular mediators of LD contacts with autophagosomes and other degradative organelles as well as the diverse cellular functions of these contact sites in health and disease.

16.
Hepatology ; 72(2): 486-502, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31808574

RESUMEN

BACKGROUND AND AIMS: Hepatocytes play a central role in storage and utilization of fat by the liver. Selective breakdown of lipid droplets (LDs) by autophagy (also called lipophagy) is a key process utilized to catabolize these lipids as an energy source. How the autophagic machinery is selectively targeted to LDs, where it mediates membrane engulfment and subsequent degradation, is unclear. Recently, we have reported that two distinct GTPases, the mechanoenzyme, dynamin2 (Dyn2), and the small regulatory Rab GTPase, Rab10, work independently at distinct steps of lipophagy in hepatocytes. APPROACH AND RESULTS: In an attempt to understand how these proteins are regulated and recruited to autophagic organelles, we performed a nonbiased biochemical screen for Dyn2-binding partners and found that Dyn2 actually binds Rab10 directly through a defined effector domain of Rab10 and the middle domain of Dyn2. These two GTPases can be observed to interact transiently on membrane tubules in hepatoma cells and along LD-centric autophagic membranes. Most important, we found that a targeted disruption of this interaction leads to an inability of cells to trim tubulated cytoplasmic membranes, some of which extend from lipophagic organelles, resulting in LD accumulation. CONCLUSIONS: This study identifies a functional, and direct, interaction between Dyn2 and a regulatory Rab GTPase that may play an important role in hepatocellular metabolism.


Asunto(s)
Autofagia/fisiología , Dinamina II/fisiología , Hepatocitos/ultraestructura , Orgánulos/fisiología , Proteínas de Unión al GTP rab/fisiología , Animales , Células Cultivadas , Gotas Lipídicas , Ratas , Ratas Sprague-Dawley
17.
J Cell Biol ; 218(10): 3320-3335, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391210

RESUMEN

Lipid droplet (LD) catabolism in hepatocytes is mediated by a combination of lipolysis and a selective autophagic mechanism called lipophagy, but the relative contributions of these seemingly distinct pathways remain unclear. We find that inhibition of lipolysis, lipophagy, or both resulted in similar overall LD content but dramatic differences in LD morphology. Inhibition of the lipolysis enzyme adipose triglyceride lipase (ATGL) resulted in large cytoplasmic LDs, whereas lysosomal inhibition caused the accumulation of numerous small LDs within the cytoplasm and degradative acidic vesicles. Combined inhibition of ATGL and LAL resulted in large LDs, suggesting that lipolysis targets these LDs upstream of lipophagy. Consistent with this, ATGL was enriched in larger-sized LDs, whereas lipophagic vesicles were restricted to small LDs as revealed by immunofluorescence, electron microscopy, and Western blot of size-separated LDs. These findings provide new evidence indicating a synergistic relationship whereby lipolysis targets larger-sized LDs to produce both size-reduced and nascently synthesized small LDs that are amenable for lipophagic internalization.


Asunto(s)
Hepatocitos/citología , Hepatocitos/metabolismo , Gotas Lipídicas/metabolismo , Lipólisis , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Triglicéridos/análisis , Triglicéridos/metabolismo
18.
Am J Hum Genet ; 105(1): 108-121, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31204009

RESUMEN

Pediatric acute liver failure (ALF) is life threatening with genetic, immunologic, and environmental etiologies. Approximately half of all cases remain unexplained. Recurrent ALF (RALF) in infants describes repeated episodes of severe liver injury with recovery of hepatic function between crises. We describe bi-allelic RINT1 alterations as the cause of a multisystem disorder including RALF and skeletal abnormalities. Three unrelated individuals with RALF onset ≤3 years of age have splice alterations at the same position (c.1333+1G>A or G>T) in trans with a missense (p.Ala368Thr or p.Leu370Pro) or in-frame deletion (p.Val618_Lys619del) in RINT1. ALF episodes are concomitant with fever/infection and not all individuals have complete normalization of liver function testing between episodes. Liver biopsies revealed nonspecific liver damage including fibrosis, steatosis, or mild increases in Kupffer cells. Skeletal imaging revealed abnormalities affecting the vertebrae and pelvis. Dermal fibroblasts showed splice-variant mediated skipping of exon 9 leading to an out-of-frame product and nonsense-mediated transcript decay. Fibroblasts also revealed decreased RINT1 protein, abnormal Golgi morphology, and impaired autophagic flux compared to control. RINT1 interacts with NBAS, recently implicated in RALF, and UVRAG, to facilitate Golgi-to-ER retrograde vesicle transport. During nutrient depletion or infection, Golgi-to-ER transport is suppressed and autophagy is promoted through UVRAG regulation by mTOR. Aberrant autophagy has been associated with the development of similar skeletal abnormalities and also with liver disease, suggesting that disruption of these RINT1 functions may explain the liver and skeletal findings. Clarifying the pathomechanism underlying this gene-disease relationship may inform therapeutic opportunities.


Asunto(s)
Autofagia , Enfermedades del Desarrollo Óseo/etiología , Proteínas de Ciclo Celular/genética , Fibroblastos/patología , Fallo Hepático Agudo/etiología , Mutación , Edad de Inicio , Alelos , Secuencia de Aminoácidos , Enfermedades del Desarrollo Óseo/metabolismo , Enfermedades del Desarrollo Óseo/patología , Proteínas de Ciclo Celular/metabolismo , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Lactante , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/patología , Masculino , Linaje , Transporte de Proteínas , Recurrencia , Homología de Secuencia
19.
J Cell Biol ; 218(7): 2096-2112, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31201265

RESUMEN

The liver performs numerous vital functions, including the detoxification of blood before access to the brain while simultaneously secreting and internalizing scores of proteins and lipids to maintain appropriate blood chemistry. Furthermore, the liver also synthesizes and secretes bile to enable the digestion of food. These diverse attributes are all performed by hepatocytes, the parenchymal cells of the liver. As predicted, these cells possess a remarkably well-developed and complex membrane trafficking machinery that is dedicated to moving specific cargos to their correct cellular locations. Importantly, while most epithelial cells secrete nascent proteins directionally toward a single lumen, the hepatocyte secretes both proteins and bile concomitantly at its basolateral and apical domains, respectively. In this Beyond the Cell review, we will detail these central features of the hepatocyte and highlight how membrane transport processes play a key role in healthy liver function and how they are affected by disease.


Asunto(s)
Membrana Celular/genética , Hepatocitos/metabolismo , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas/genética , Animales , Membrana Celular/metabolismo , Movimiento Celular/genética , Humanos , Hígado/metabolismo , Proteínas de Transporte de Membrana/química , Tejido Parenquimatoso/metabolismo
20.
Semin Liver Dis ; 39(3): 283-290, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31041790

RESUMEN

Lipid droplets (LDs) are key sites of neutral lipid storage that can be found in all cells. Metabolic imbalances between the synthesis and degradation of LDs can result in the accumulation of significant amounts of lipid deposition, a characteristic feature of hepatocytes in patients with fatty liver disease, a leading indication for liver transplant in the United States. In this review, the authors highlight new literature related to the synthesis and autophagic catabolism of LDs, discussing key proteins and machinery involved in these processes. They also discuss recent findings that have revealed novel genetic risk factors associated with LD biology that contribute to lipid retention in the diseased liver.


Asunto(s)
Autofagia , Hígado Graso/metabolismo , Gotas Lipídicas/metabolismo , Animales , Hígado Graso/fisiopatología , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...